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ABSTRACT

An eigiteen level axisymmetric primitive equation tropical cyclone
model which incorporates the Arakawa-Schubert (1974) spectral cumulus
parameterization is presented. The quasi-equilibrium hypothesis, which
involves the solution of an integral equation for the cloud base mass
flux distribution, is successfully formulated as an optimization pro-
blem to guarantee a nonnegative solution. A linear analysis suggests
that in the tropics a large fraction of the available potential energy
generated by the release of latent heat is partitioned to gravity-
inertia wave motion and hence is radiated away to the far field. There-
fore, an approximate pure gravity wave radiation boundary condition is
derived which minimizes the reflection of gravity-inertia waves by the
lateral bourdary of the model.

The sersitivity of axisymmetric model storm development to the
exact form of the lateral boundary condition, initial moisture distri-
bution, and latent heat release mechanism is tested. It is demon-
strated that the development of a hurricane-like circulation can be
simulated without parameterized convection as suggested by Rosenthal
(1978). Several other sensitivity experiments are conducted to address
the roles of radiation and cumulus momentum transport in tropical
cyclone development. The numerical results lead to the conclusion that
neither of these processes should be neglected in attempts to numeri-
cally simulate the Tife cycle of the tropical cyclone since they appear
to contributz significantly to the organization and scale of tropical

disturbances.
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1.0 INTRODUCTION

The genesis and intensification of the tropical c¢yclone must cer-
tainly rank among the moét spectacular of atmospheric phenomena.
Observational studies have long since established that the energy to
drive these storms is obtained from the release of Tatent heat in deep
cumulus convection {(e.g. Riehl and Malkus, 1961; Yanai, 1961a, b).
Unfortunately, howsver, the details of the interactions between the
cumulus and large-scale which give rise to the formation of a tropical
storm are much less well understood.

Early linear stability analyses of the growth of small amplitude
perturbaticns in a conditionally unstable environment were unable to
explain the observed size and growth rates of the tropical cyclone
(e.g. Haque, 1952; Sydno, 1953; Lilly, 1960). Thus, Charney and
Eliassen (1364) and Ooyama (1964) proposed a mathematical theory in
which the cloud field is organized so as to give rise to a heat source,
which causes amplification of the large-scale disturbance, which in
turn amplifies the cloud field. This cooperative interaction bctween
the cloud field and large-scale circulation is more commonly referred
to as Conditional Instability of the Second Kind (CISK).

Since the dynamical processes of the tropical cyclone generally
occur on two widely different space and time scales (large-scale and
cumulus-scale) both Charney and Eliassen and Ooyama treated the
convectives-scale: implicitly, or by what is now called cumulus param-
eterization. Their approach stimulated many efforts to numerically
simulate the 1ife cycle of the tropical cyclone with more complicated
nenlinear rodels (e.g. Ooyama, 1969a, b; Sundqvist, 1970a, b; Yamasaki,

1968a, b; kosenthal, 1970; Anthes, 1972). The cumulus parameterization



methods employed in these models were highly empirical, neglecting
many of the physical processes involved in the mutual interaction of
the convective-scale and large-scale. Although these schemes have
performed rather well, it is generally agreed that their relatively
crude character Timits their ability to contribute to a greater under-
standing of the processes which lead to tropical cyclone formation.

A thecretically complete and much more satisfying approach to
cumulus parameterization has been proposed by Arakawa and Schubert
(1974). Their theory describes the mutual interactior. between an
ensemble of cumulus clouds and the large-scale environment. The
cloud field (or cloud ensemble) is represented by a spectrum of ideal-
ized model clouds ('sub-ensembles') each of which has its own mass,
heat and moisture budget. The vertical transports accomplished by
this spectrum of model clouds are actually the convective-scale eddy
fluxes which appear, for example, in the horizontally averaged budget
equations for dry static energy s, and water substance q {e.g. Yanai
et al., 1973). Thus, knowledge of these eddy fluxes reduces to the
determination of the cloud base mass flux for each member of the
spectrum of model clouds. In order to predict the convective-scale
eddy fluxes, Arakawa and Schubert propose the concept of quasi-
equilibrium which assumes that the cloud base mass flux distribution
can be related to time changes in the large-scale thermodynamic
fields. Since this theory is the most physical and mathematically
elegant approach proposed to date we believe it has the most potential
for providing additional insight into the interactions between the
cumulus-scale and large-scale which lead to tropical cyclone develop-

ment. Surprisingly, with the exception of one investigation



(Wada, 1979), the theory has yet to be used in the numerical simulation
of a tropical cyclone.

In this thesis, we briefly review the axisymmetric primitive
equation tropical cycione model first presented by Hack and Schubert
(1976). The two unique aspects of the model are the convective param-
eterizatisn, which follows the theory presented by Arakawa and Schubert
(1974), and the formulation of the lateral boundary condition, which
can be described as an approximate pure gravity wave radiation condi-
tion.

From a computational point of view, the most difficult aspect of
the Arakawa-Schubert cumulus parameterization is the solution of the
integral =quation for the cloud base mass flux distribution. The
various tzchniques suggested for solving this equation are all deficient
since they do not guarantee a nonnegative mass flux distribution which
is a necessary constraint if the solution is to be considered physically
reasonable. By relaxing the quasi-equilibrium assumption, however,
it is possible tc formulate an optimization problem which constrains
the cloud base mass flux to be nonnegative. This procedure, which
is referrad to as the optimal adjustment method, is discussed in
chapter 2.

The particular formulation of the lateral boundary condition is
motivated by the recent linear studies of geostrophic adjustment by
Schubert =t al. (1980) and Silva Dias and Schubert (1979) which suggest
that in 1ow latitudes most of the available potential energy generated
by the release of latent heat is partitioned to gravity-wave motion

and is therefore radiated away to the far field. A similar argument



is extended to a fully stratified model atmosphere (chapter 3) which
gives rise to the lateral boundary condition employed in the model.

For nearly two decades the numerical simulation of the development
of a hurricane circulation with the explicit release 2f latent heat was
regarded as unachievable since early attempts to do so ended in ap-
parent failure (Kasahara, 1961, 1962; Sydno, 1962). Recently, however,
Rosenthal {1978) has successfully simulated the develapment of a
tropical cyclone in which convective elements are explicitly resolved,
demonstrating that the failure of these early investijations was
probably not related to the explicit release of latent heat in a con-
ditionally unstable atmosphere, but rather to a deficient model design.
In chapter 5 we show that the tropical cyclone model ised in this study
is also capable of producing a hurricane circulation using only the
explicit release of latent heat, although the desirability of such an
approach is questionable.

Recent diagnostic studies of tropical weather systems have iden-
tified net longwave radiational cooling and cumulus-scale transports
of horizontal momentum as two processes which appear to contribute
significantly to the large-scale dynamic and thermodysamic budgets
(e.g. Yanai et al., 1976; Reed and Johnson, 1974; Shasiro, 1978,
Stevens, 1979). Previous numerical simulations of thz tropical cyclone
have generally neglected each of these convectively maodulated processes.
In chapter 6 we consider the sensitivity of model sto~r development to
the incorporation of each process as well as to the combination. Other
experiments which examine the sensitivity of model storm development
to the initial moisture field and the lateral boundary condition are

also conducted (see chapter 5). The response of the model is used to



assess the significance of each of these effects on tropical cyclone

development.



2.0 MODEL CESCRIPTION

2.1 Large-Scale Governing Equations

We begin by noting that the large-scale governing equations are
formulated for an f-plane using axisymmetric cylindriczl coordinates
in the horizontal, and the o-coordinate in the vertical. Following
Arakawa and Lamb (1977) we define o as

p-pT_ p'pT

e ot (2.1)

0 =

where the top boundary pressure Py is a specified constant, and the
surface pressure Pg (or equivalently w) is a function of the horizontal
coordinate and time. The upper and lower boundaries are respectively
given by 0=0 and o=1. In the special case where pT==0, (2.1) reduces
to the definition originally proposed by Phillips (195V).

The governing equations, which consist of the hor-zontal momentum
equations, the hydrostatic equation, the mass continuity equation, the
thermodynamic equation, the ideal gas law, and the water vapor mass

continuity equation can be written

du _ v 3¢ om _ o
gt - (F+)vesmtoago=S o (2.2)
vy (fedyu=s (2.3)
dt r v’ ’
9 _ _
o T (2.4)
dm aru gé _
atT [rar * 80]"0 > (2.5)

(2.6)



oo, = RT (2.7)
949 - _(c. '
r (C-E) + sq R (2.8)

where the individual time derivative of an arbitrary scalar quantity

Y is given by
o _ oy Wy 5N
at "t U 5r + O 3o °? (2.9)

and the :ymbols are defined as follows:
r - radius
t - time
u - radial wind component
v - tangential wind component
c - vertical o velocity, do/dt
p - pressure
o - specific volume
T - temperature
¢ - geopotential
g - water vapor mixing ratio
C - rate of large-scale condensation per unit mass of dry air

E - rate of large-scale evaporation per unit mass of dry air

Su- R
Sv -
3 convective scale source/sink terms
ST -
S"/
&

f - constant Coriolis parameter
R - gas constant for air

c,. - specific heat capacity for air



K - R/cp

L - latent heat of evaporation
The formulation of the convective-scale source/sink terms is discussed
in sections 2.2 and 2.3, while the formulation of the large-scale
condensation (C) and evaporation (E) is presented in section 2.4. In
the absence of these terms, (2.2)-(2.7) govern adiabatic inviscid flow.

As.upper and Tlower boundary conditions we require that air par-
ticles do not cross the =0 and o =1 coordinate surfaces, i.e.

G=0 at 0=0,1. (2.10)

Integrating (2.5) over the entire vertical column using the boundary

conditions (2.10) gives

1
g—'”= - rg—r f rrudo . (2.11)
0

If we now integrate (2.5) from the top of the vertical column to o
using the upper boundary condition, we obtain yet anotrer form of the

continuity equation
o

- om , 9 -
TO = - [c 5t * vor J mrudo ] . (2.12)
0
Thus, knowledge of the radial wind component u allows computation

of %%—by means of (2.11), and 7o may then be diagnosed at any o level
using (2.12).

Defining the potential temperature

6 =T {p—°]K (2.13)

and using the definition of the vertical coordinate (2.1), allows us

to rewrite the thermodynamic equation (2.6) as
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Y

o]
o

o

QJ!C)J
Q

T L

-+ = — (C-E} +S
dt (

p “p

T - (2.14)

The system of equations is now complete consisting of ten equations
(2.11, 2.2, 2.3, 2.14, 2.8, 2.1, 2,12, 2.7, 2.4 and 2.13) in the ten
unknown variables =. u, v, T, Q, P, 6, 6, ¢, and €, all of which are
functions of the three independent variables {r,o,t} with the exception
of 7 which is a2 function of (r,t) only. Five of these variables are
predictzd (w, u, v, T and g) while the others are diagnosed.

Fo purposes of numerical integration it is more convenient to
consider the five prognostic equations in flux form rather than in the
advective form in which they have been introduced. Using the form of
the continuity equation given by (2.5) and the definition of the total
derivative (2.9), we cbtain the flux form of the individual time deriv-

ative o7 an arbitrary scalar quantity ¢ as

d .
n Q. 83_t (mp) + Fg—r' (rruy) + j—g (n6p) . (2.15)

Accordingly, the prognostic equations can be rewritten, and the com-
plete system of equations can be arranged for numerical integration in

the foilowing corder.

1
IR I
=g (mr) = - = j mrudo (2.16)
0
o
TS = - o o (mr) + 2 f Trudc” | (2.17)
[ 3t or | S '
4]
p=py *T0 , (2.18}
o = B0 (2.19)
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9 _ _
5o O (2.20)
é%—(ﬂru) = - g%-(wruu) - g%-(nréu)-+(f4‘¥0 TV
(2.21)
- r(m %%—-cha %%)-ersu .
2 (mrv) = - 2 (mruv) - 2 (mrov) - (F+3L) mru+7rs (2.22)
at ar 30 r v °? :
D \K
6 = T[—°] , (2.23)
p
2 (reT) = = 2 (o) - (2] 2 (aroe)
at ar Py ag
(2.24)
mroo | 9 3 L ‘
+?[ﬁ+ua—r}'ﬂ+ﬂr€;(c-l§) +1ﬂrST s
-9—(nrq) = - jl-(nruq)- 2 (rrgq) +mr(-C+E) + 7rS (2.25)
ot ar a0 q ‘

Initial conditions are required on the five progncstic variables
T, W, V, T and q. The initialization procedure as well as the initial
conditions are discussed in chapter 4. The procedure followed in a
single prognostic cycle is as follows.
1) Calculate the tendency of w from (2.16).
2) Using the tendency of m just calculated, calculate mro from
(2.17).
3) Using (2.18) and (2.19), calculate the geopotential ¢ from
(2.20).
4) cCalculate the tendencies of u and v from (2.21) and (2.22).

5) Using (2.23) calculate the tendency of T from (2.24).
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6 laiculate the tendency of g from (2.25},

7} Fetyrn to the First step.
The Ziscrete mode? consists of 18 levels in the vertical direction

(pT==1OU wh) and 64 grid woints in the horizontal diraction (Ar=15 km).

—md

-
H

Horizental and vertice! finite differencing of (2.163-{2.28) follow the
schemes proposed by Arakawa (1972) and Arakawa, Mintz et al. (1574} for
the UCLA M. The vartical differencing is identical to the 1972 UCLA
scheme while ihe horizontal differencing is somewhat different due to

the use ¢* cylindrical coordinates and considerably simpler due tec our

assumptic~ of axisymnetry. A discussion of the finite differencing of
the larce-sca’ez governing equations (2.16)-(2.25) fs included in

Appendix .

-~

2.2 Pavarcterization of Cumulus Convection

The importence of cumulus convection to¢ the genesis, intensifica-

tion anc ~rintenance of the tropical cy established

ﬁ

icne ha

(%3]
9
2
cr
[g>]
133
=3

-1

by observational studies {e.g. Riehl and Malkus, 1961;: Yanai, 1%87a, b)}.
However, =ariy stab®lity anziyses (Haque, 1952; Syorn. 19533 Litly
1960), which freat the dynamics of the cyclore in most respects “ike

a cloud, were unable to account for the observed size and growth rates
of tropical cyciones. This apparent failure of theory led Charresy and
Eliasser '1954) and Ooyama (1964} to introduce zhe concept of Condi-
tional Instadbility of the Sacond Kind (CISK) which embodies 2 cuscpera-
tive int2-:ction between the cumulus-scale and large-scaie. In a

broad sen:ie, CISK describes & situation in which the large-scaie

circulation is responsibie for organizing and maintaining cumulus

. , 1n
convactisn 2y providiang ths nesesssary transport of nater wapor, wiile
the cum.is-siate drives the larpe-scale cuirculetion whraugh the



12

release of Tatent heat in deep convective elements. Both Charney and
Eliassen and Ooyama dealt with the Targe-scale expl citly, but treated
the convective scale implicitly, i.e. the cumulus activity was
specified to be a function of the large-scale fields, or was treated
by what is now commonly referred to as cumulus parameterization.
Although Charney and Eliassen's and Ooyama's work dealt only with
the initial growth of a tropical depression, their zpproach stimulated
efforts to numeri;a]]y simulate the life cycle of tropical cyclones
with more complicated non-linear models. The convective parameteriza-
tions employed in these tropical cyclone models were highly empirical,
neglecting many of the physical processes involved in the mutual inter-
action of cloud and environment. These included sctemes in which the
convective-scale heating rates were dependent upon the large-scale
convergence of water vapor in the atmospheric boundary layer (Ooyama,
1969a, b; Ogura, 1964), and the net large-scale convergence of water
vapor. throughout the depth of the troposphere (Kuo, 1965). Such schemes
have performed surprisingly well in numerical integrations (e.g.
Yamasaki, .1968a, b; Ooyama, 1969, b; Rosenthal, 1970; Sundqvist, 1970a,
'b) .in which. the models have produced many of :the important features
observed in tropical cyclones. It is generaily agreed, however, that
these relatively crude techniques are limited in their ability to
contribute to a greater understanding of the interaction between
cumulus clouds and the cyclone-scale flow in tropical storms,
especially during the developing (or nondeveloping) stages. Unfor-
tunately, suitable alternatives were lacking for many years, primarf]y
because of a lack of knowledge regarding the interaction of clouds

with the larger scale.
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The problem of establishing the physical nature of the interaction
of organized cumuius convection with the lTarge-scale fields is funda-
mental to tropical meteorology. A c?eariunderstanding of this inter-
action is in all likelihood essential to an understanding of why the
tropical cyclone is such a rare event. In recent yvears, many diagnos-
tic (and some prognostic) studies have been made which have led to an
improvement in our knowledge of cumulus convection, and consequently
to an improvement in cumulus parameterization theory. Simple one
dimensional cloud models have proven to be useful in diagnosing the
interaction of precipitating cumulus ensembles with the larger-scale
motions (e.g. Yanai et ai., 1973; Ogura and Cho, 1973; Gray, 1973;
Nitta, 1977, 1978; Yanai et al., 1976; Johnson, 1976, 1977). The use
of such idealized models of convection has enabled observationalists
for the first time to extract convective-scale properties directly
from tre large-scale observations. The simpler problem of non-
precipitating trade wind cumulus convection has also been studied
(e.g. Buystein et al., 1973; Holland and Rasmussen, 1973; Betts, 1975;
Nitta, 1975) and has contributed to a better understanding of the way
in which the convective-scale fluxes contribute to the growth anrd
maintenance the trade inversion. These and other studies have helped
to estabiish a general consensus on how cumulus clouds modify the
large-sceie thermodynamic fields.

Ooyema (1971) recognized the need to improve cumulus parameteriza-
tion thecry, and was the first tc propose a theory taking into account
the ceexistence of a spectrum of clouds. The clouds were represented

by independent entraining buoyant elements dispaiched from the mixed
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layer. The theory was not closed, however, since the determination

of the 'dispatcher function' was left to future consideration. Even
so, several numerical experiments have been conducted with the theory
(using empirically derived forms of the dispatcher function) yielding
reasonable rasults (Ooyama, 1973; Rosenthal, 1973).

Arakawa and Schubert (1974) have proposed a closed cumulus param-
eterization theory which describes the interaction of a spectrally
divided cumulus cloud ensemble with the large-scale environment. With
the exception of one investigation (Wada, 1979) this theory has yet
to be used in the numerical simulation of a tropical cylcone. Since
the theory is the most complete theory proposed to date, we will make
use of it in this study with the hope that it may help provide
additional insight into the interactions between the cumulus-scale
and large-scale which lead to tropical cyclone developrent. In this
section we discuss the formulation of the Arakawa-Schutert cumulus
parameterization theory. Several simplifications have been made
to the theory for computational reasons and will be noted in the
discussion.

The mutual interaction between the cloud ensemble and the large-
scale environment is conceptually illustrated in Fig. 2.1 where the
equations of the theory have been grouped into three c:tegories:
feedback, static control, and dynamic control (Schubert, 1974). The
equations which constitute the feedback part of the Toop describe
how the cumulus-scale transport terms and source/sink terms modify
the large-scale thermodynamic fields, while the equations comprising

the static and dynamic control parts of the interaction loop describe
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how the properties of the cloud ensemble are controlied by the large-
scale fields. We continue our discussion of the parameterization
theory within this framework.

2.2.1 Feedback

The complete theory divides the large-scale envirorment into a
subcloud mixed Tayer of variable depth and the region of cumulus con-
vection above the mixed layer, separated by an infinitesimally thin
transition layer (see Fig. 2.2). 1In the subcloud mixed layer the dry
static energy (szchT-+¢), water vapor mixing ratio q, and therefore
the moist static energy h, are constant with height and are denoted
by the symbols Sys Gy and hM‘ The top of the subcloud mixed layer
Py is generally somewhat below cloud base Pc- Below Pg> convective-
scale transports are accomplished by the turbulence of the mixed layer,
where the turbulence is confined below Pg by the stable and infinites-
imally thin transition layer. Across the transition layer there can
be discontinuities in the dry static energy and moisture, as well as
discontinuities in the convective-scale fluxes. Above Fg the convec-
tive-scale transports are accomplished by the cloud ensemble. Let us
write the heat and moisture budget equations for this region in terms

-

of dry static energy s and water vapor mixing ratio q (¢*. VYanai

et al., 1973). These are

§§:- s - —-QE I vy ")+ LE + 2.26
3= -WeVs - 03 ap(m S0+ LR+ 0 (2.26)

=]

and
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.%:-W.ﬁ_gapr%[ﬁﬁﬁfu-R. (2.27)

Q

The barred quantities represent horizontal averages over ar area large
enough to contain an ensemble of clouds, but small eno.gh <o as only
to cover a fraction of a large-scale disturbance. The primed quanti-
ties represent deviations from the horizontal averages and are inter-
preted as convective-scale properties, while the quantity F is the
convective~scale 1iguid water sink (i.e. the water remcved by convec-
tion in the form of precipitation). The 1iquid water <tatic energy

S, =5~ Le 1is the static energy analogue of the liquicd waier potential
temperature introduced by Betts (1975).

In addition to the vertical transport of heat and moisture, we
allow the cumulus ensemble to vertically transport (i.e. redistribute)
horizontal momentum. A budget equation, which is similar {0 those
for heat and moisture, can be derived for the horizontz1 momentum W
and is written
-3V

V.oW W oo ur - O (T
—\V»v\v-w—ﬁ)—-flkx \V-vq)-gﬁ(m W) . (2.28)

@ QL
%<

Following Schubert (1974) we express the convective-scile tTuxes of
dry static energy, water vapor, 1iquid water, and horizonta1 momen-

tum as

B
[T n(pp) [s (pB) - SRV mg() @b b pg, (2.29)
Pg=P7 |
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pB“p
-J n(p>B) La (p.p) -alp)I mg(p) db p < pp » (2.30)
pB_pT

Pg
[ e 2(pp) M) O p<pg (2.31)

@ |—
]
e
5
g
]
"

=
Lo}
o
g
|

[ npab) [V (puB) - WP mg(5) @b p < py.(2.32)
Pg~Pr

We see from {2.29)-(2.32) that the cumulus cloud ensemble has been
spectrally civided into 'sub-ensembles' each of which is characterized
by its pressure depth p = PR~Pp> where Pp is the detrainment pressure
level. Our use of o as the spectral parameter differs from the origi-
nal formulation in which the sub-ensembles were characterized by the
fractional entrainment rate A. This alteration is motivated by
computational convenience and will be discussed further when we con-
sider the dynamic control part of the theory. Thus, the dry static
energy, water vapor, liquid water and horizontal vector momentum inside
sub-ensembie p at lavel p are respectively denoted by sc(p,ﬁ), qc(p,ﬁ),
¢{p,p) and ‘vc(p,ﬁ). The vertical mass flux at level p due tc sub-

ensemble p is n(p,ﬁ)mB(ﬁ)dﬁ where n(p,p) is the normalized mass flux
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which has unit value at the top of the sub-cloud mixed layer Py A
simple physical interpretation of (2.29)-72.32) is that for each sub-
ensemble 5, the net upward flux at level p of a particular quantity
(such as s or W) is given by the difference between the upward flux
of that quantity inside the sub-ensemble (denoted by subscript c) and
the downward flux of the environmental value (denoted by a bar). This
downward mass flux in the envirohment is merely the :ompansating sub-
sidence produced by the sub-ensemble. Since the enviromment does not
contain 19quid water there is no downward flux of liquid water due to
environmental subsidence, and the convective-scale Tiquid water flux
takes a simpler form. The total ensemble flux at level p of any

quantity (such as FS or F is then given by an integra’ over all

W)
sub-ensembles which penetrate level p.
By combining the three basic fluxes Fs, Fq, and F2 we can rewrite

(2.26) and (2.27) as

3 _ 95 3 '
3t - at| s + gap Fs-Lﬁ + LR (2.33)
and
39 _ 39 3 i
T atl e * 955 Fq+2 R (2.34)
where
Fs-Lz = Fs - LFQ s (2.35)
F = F_+F s (2.35)
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and the la~ger scale contributions to the time derivatives on the left
hand side »f (2.2€6) and (2.27) have been grouped intc one term denoted

with the subscript L.S. Similarly, (2.28) can also be rewritten

CL ‘ﬁ} CTeE Ry (2.37)
The convective liquid water sink R is defined by
Pg-P
R(P) -9 n(p.B) c,(BIalp.Pimg(F) b - (2.38)
Pg=Pr

The expression for R states that the quantity of water removed from
the atmosphere at level p by sub-ensemble p is simply proportional to
the sib-ensemble 1iquid water content at that level. Physically this
means that a certain fraction of the liquid water content (or cloud
droplets) of each sub-ensemble is converted to raindroplets (as
speci-ied hy the coefficient co(B)) which are immediately removed
from the cystem (i.e. they are assumed to reach the ground withcut
evaporating). As originally formulated, Arakawa and Schubert chose

a constant autoconversion coefficient cO of 2.0x 10“3 1

m  so that the
calcu'lated values of the cloud 1iquid water content would approximately
agree with observed values. However, Silva Dias and Schubert (1977)
used he results of a theoretical parametric model of cumulus convection
(Lope:z, 1973) to demonstrate that a constant value of N probably
under:stinated the precipitation associated with deep clouds while
overestimating the precipitation associated with shallow clouds. In

a one dimensional (’semi-prognostic') model which incorporated the
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Arakawa-Schubert parameterization scheme, they went on t> show that the
choice of a variable autoconversion coefficient (which p-oduced more
reasonable precipitation rates) had 1ittle effect on the cloud popula-
tion produced by the model, although it did slightly decrease the
magnitude of the temperature and moisture tendencies associated with
the parameterized convection. Thus, we have chosen to use an auto-
conversion coefficient < which is dependent upon B {see Fig. 2.3)
such that the deep clouds are more efficient at producing precipita-
tion while the shallow clouds are less efficient.

Since R(p) then represents the total ensemble sink of 1iquid
water at level p, we obtain the total ensemble precizitation rate (P)

by integrating R(p) over the depth of the model atmosphere,
Pg
p = —J R(p)dp . (2.39)

Below Pg the convective-scale fluxes of s, g and Were linear ‘in

Fq)s
the convective-scale flux of & is zero everywhere. In tlte complete

pressure with the values (FS)S’ ( and (FW )S at =he curface, and
theory, the surface fluxes and convective-scale fluxes of heat and
moisture at Pg. determine the time variation of the deptt of the sub-
cloud mixed layer. However, the present version of the tropical
cyclone model does not include a mixed layer of varizble depth, but
rather a 'mixed layer' whose top is defined by a fixed sigma coordinate
surface. Thus, for computational reasons, we find it necessary to
modify the way in which the cumuius ensemble interacts with the mixed
layer. This modification involves allowing the cumulus convection to

directly influence the energy budget of the mixed layer, rather than
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determining the depth of the mixed layer as in the more general thecry.
The budget equations for the dry static energy, moisture and momentum

of the mixed layer (sM, Ay and WM respectively) are given by

3s
i & ey
90y ) _
3 WyeVay + 5;%55 [(Fg)s-(Fglgl (2.41)
and
3 WM
3t :"WM'VWM'+B;%Eg[(FW)S‘(FW)B] (2.42)
where
(F)p = AsMg
(Flg = daMy : (2.43)
(Fylg = oWMg

In (2.43) the symbol delta represents the jump of the particular
property across the top of the sub-cloud mixed layer pB(e.g. As =
EKpB_)—EM). The quantity My is the total cloud base mass flux

associated with the cumulus ensemble, i.e.
0

= mgh) . (2.44)
Pg=Pt
We note that in the above formulation, the convective-scale fluxes of
s and q are continuous across the top of the subclouc mixed layer even
though the large-scale values are not. One additional approximation
we make is that the cloud base Pe and the top of the model mixed layer

Pg are one and the same.
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s-L1° Fq+%’ FW >

the cumulus ensembie source/sink term R constitute the feedback part

The cumulus ensemble transport terms, F MB’ and

of the interaction loop shown in Fig. 2.1. From (2.29), (2.30), (2.31),
(2.32), (2.38) and (2.44) we see that the determination of these quan-
tities is equivalent to the determination of n(p,p), sc(p,ﬁ), qc(p,ﬁ),
2(p,D), Wc(p,ﬁ) and mB(ﬁ). A1l except mB(ﬁ) are determined in the
static control part of the interaction loop while mB(ﬁ) is determined

by the dynamic control. Once these quantities are known, it is possible
to predict the time variation of the temperature and moisture field

both above and below Pg-

2.2.2 Static control

The stb-ensemble normalized mass flux, moist static enérgy and
total water content are determined from their respective budget equa-

tions. These are given by

Iribap) (BB - (Byn(p,h) (2.45)
55 (PP (p.D)] = -A(BIn(p.P)Rp) (2.46)

and

2 {n(p,B)[a(p5)42(p,B)1} = n(p,B)c, (B)2(,H)-MBIn(p.BYa(p) » (2.47)

where the fractional entrainment rate A(P) has the units Pa_1. The air
inside the sub-ensembles (or clouds) is assumed to be saturated at a
temperature only slightly different than the environment, an assumption

which gives rise to the saturation relation

A(p.p) = T(p) + 7ARL - [ (pg)- TR, (2.48)
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where q*(p) is the saturation value of q at level p, h*(p) is the

saturated moist static energy at level p and y(p)Eigl-[%%:] (cf.
p

Arakawa, 1969). In order to determine the individual sub-ensemble
budgets, knowledge of the fractional entrainment rate X(E) is required.
This entrainment rate is given by the vanishing bouyancy condition

A —

s, (Pop) =s,(p) , (2.49)
c

or using the definition of the virtual dry static energﬁ

sy (Psp) = s(p) +c,T(p) 8la (p.P) -alp)] , (2.50)
c

where § = 0.608 .

The sub-ensemble horizontal momentum Wc(p,ﬁ) must be determined
as a function of the large-scale dynamic and thermodynamic fields.
This is a more difficult problem, since Wc(p,ﬁ) is not a conserved
quantity as are some thermodynamic properties. Convective-scale
pressure gradients, as well as stresses produced by the large shears
present between the updraft and environment motions, are likely to
produce some modification to the 'in cloud' horizonta® momentum. How-
ever, here we follow the simple alternative (e.g. Ooyama, 1971; Arakawa,
Mintz et al., 1974; Schneider and Lindzen, 1976) of assuming that “2
is conservative. This leads to the sub-ensemble budget equation for

momentum
= [n(p.P) W (p.D)] = -A(BIn(p,P) Wp) . (2.51)

Thus, the static control part of the interaction loop consists of

the six equations (2.45)-(2.48), (2.50), and (2.51) in the six unknown

]The effects of 1iquid water have been neglected.
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variables n(p,p), sc(p,ﬁ), q.(p,0), 2(p,p), A(B). and Wc(p,ﬁ). Since
(2.45)-(2.47) and (2.51) are differential equations which are solved
upward from Pg > they require the appropriate boundary conditions which
are n(py.B) =1, h_{pg.B) =hy, q.(pg.P) =y, &(pz.0) =0 and W (py.P) =
WM .
2.2.3 Dynamic control and the optimal adjustment method

The last remaining problem is the determination of the mass flux
distribution function mB(B) since once it is known, the time variation
of the temperature, moisture and momentum fields can be predicted from
(2.33), (2.34), (2.37) and (2.40)-(2.42). 1In order to determine
mB(B), Arakawa and Schubert first introduce the cloud work function

~ pB — r
KB = [ ne) s, ()5, 01 (2.52)
Pp(P)

an integral measure of the bouyancy force associated with sub-ensemble
D, with the weighting function n(p,p). Physically, A(p)>0 can be
thought ¢f as a generalized criterion for moist convective instability,
while A([)< 0 is indicative of a neutral or stable situation. It is
also a measure of the efficiency of kinetic energy generation by buoy-
ancy forces for sub-ensemble E. Since the variables in the integrand
of (2.52° are either prognostic variables, or are related diagnostically
to prognostic variables, the time rate of change of A(pP) can be written
in terms of the time derivatives of Sy> Gy s(p), and q(p) (we here-
after refar to barred and mixed layer quantities as 'large-scale'
quantities). Thase time derivatives are in turn related to two types
of terms: convective-scale terms which are proportional to the cloud

base mas: flux distribution mB(E), and the large-scale terms which
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include horizontal and vertical advection, radiation, and surface
eddy fluxes (see equations (2.26), (2.27) and (2.40)-(2.41)). Thus,
the time rate of change of A(p) can be expressed as t'e sum of convec-
tively induced changes and large-scale changes (in wtich we have in-

cluded surface eddy fluxes), or

A(P) . 3A(p)] 3A(p)
5t 5 |5 Ot | g (2.33)

Since the convective-scale terms depend linearly on mB(ﬁ) and all

A,

sub-ensembles participate in determining Q%%El’ » We can write
C.S.
n 0
BA(E' - _ ~ /\’ A’ /\’ ’”~ -
5t K(psp ) mB(p ) dp + FL.S.(p) ) (2.54)
pB-pT

where the kernel K(p,p”) and the forcing FL.S.(a) are known. The
kernel represents either a destruction or generation of A(p) by sub-
ensemble p” if sub-ensemble P~ has unit cloud base mass flux.
Arakawa and Schubert proposed a closure hypothesis, referred to
as quasi-equilibrium, which requires balance between the large-scale
generation of A(p) and the convective-scale destruction of A(p) for
all sub-ensembles. Mathematically this closure hypoth2sis takes the

form
0

-f K(p.p*) mg(p”) dp” + F o (B) =0 . (2.56)
pB'pT

It is appropriate at this point to consider the use of B (pressure
depth) as the spectral parameter, rather than ) (fractional entrainmert
rate) as in the original theory. Because we will be incorporating

the parameterization scheme in a vertically discrete model atmosphere,
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the use of XA as the spectral parameter must be reconsidered since in
order to *ollow sub-ensemble X in time, the detrainment pressure level
pD(k) (and hence the detrainment sigma level oD(k)) would become a
function of time. Since the vertical coordinate is fixed for all time
at a finite number of points, A could be retained only with interpola-
tion of the cloud work function in A-space which would introduce sig-
nificant errors in the application of the theory. Thus we have chosen
p, the cloud depth pressure as the spectral parameter since the cal-
culation of §§%§l~poses much less of a computational problem.

We now note that this change in the spectral parameter somewhat
9A(p) , 3A(A)

alters gquasi-equilibrium as originally formulated, since

ot ot
The exact relationship between the two forms can be written
3A(D) . [3A(R)) , [3A(R)) (an(p))
3t [at T Ua et ) (2.56)

The use o° P as the spectral parameter gives rise to a second term
which was not present in the original theory. This involves the time
rate of change of the fractional entrainment rate of sub-ensemble ﬁ,
since X is now an independent variable. The selection of the spectral
parameter is one of the arbitrary aspects of the cloud model, and it
is not clear that the choice of A has any more physical significance
than the choice of P; i.e. the choice of p as the spectral parameter
may be just as reasonable as the choice of A. As one example, Lord
(1978) has recently assembled observational evidence which shows the
cloud worl function to be a quasi-universal function of detrainment

level pD1, Since this is yet an unresolved aspect of the cioud model,

TIn ~he absence of surface pressure variations, our spectral
parameter of sub-ensemble pressure depth reduces to sub-ensemble
o £y oy
detrainment pressure level as suggested by Lord {1372}.
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and since from a computational point of view we are forced to use a
spectral parameter other than fractional entrainment rate, we proceed
with our use of ﬁ noting the modification this makes to the original
formulation of quasi-equilibrium.

Requiring balance between the large-scale generation and convec-
tive-scale destruction of A(P) means that our equation for mB(ﬁ) takes
the form of a Fredholm integral equation of the first kind. The
various schemes suggested for solving this type of equation do not
guarantee a non-negative mass flux distribution which is a necessary
constraint if the solution is to be regarded as physically reasonable.
In order to avoid the difficulties associated with obtaining negative
cloud base mass fluxes in the solution, we have chosen tc restate the
quasi-equilibrium hypothesis as an optimization problem (Hack and
Schubert, 1976) which can be written in the following form. Let S

represent the subset of the p domain for which Fl s (p)>0. We wish

then to
minimize ’j c(p) 9%%21 dp i ,
P
subject to
BA 3 - ~rOA A, ~, ~
Jﬂat ) K(p,p")mg(p~)dp” + F ¢ (P) .
p
me(p) 20,
%%Eli 0. (2.57)

Formulating the problem in this way requires quasi-equilibrium to be
satisified as closely as possible while constraining th2 cloud base

mass flux distribution to be non-negative. This particular formulation
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of the problem is referred to as the 'overadjustment case' by Silva
Dias and Schubert (1977) who have investigated other formulations of
the optimation problem (underadjustment and free variable cases). In
(2.57) both E%%El and mB(ﬁ) are regarded as unknowns while c(p},

K(p,p~) ard F {p) are regarded as knowns. The weighting function

L.S.
c(p) is defined to be negative in order to maintain a mathematically
well posec minimization problem. The discrete form of (2.57) turns
out to be a Tinear programming problem which is readily solved using
the simplex method (Dantzig, 1963; Luenberger, 1973) and is discussed
in the following paragraphs as the optimal adjustment method.

As we saw in section 2.2.1, the processes which contribute to
changes in the large-scale temperature, moisture, and momentum fields
can be divided into two parts: 1large-scale terms, consisting of large-
scale horizontal and vertical advection, large-scale pressure gradient
and Corjo is accelerations, radiation and surface eddy fluxes; and
convective-scale terms, consisting of convective-scale flux divergence
and source/sink terms (see equations (2.26), (2.27), (2.28), (2.40)-
(2.42)). In the tropical cyclone model, the Targe-scale terms and
convective-scale terms are computed separately using different time
steps. Tupically these time steps are 20 seconds for the large-scale
terms and 300 seconds for the convective-scale terms. Thus, it is
convenient from a computational point of view to formulate the cumulus
parameterization in terms of an adjustment process. Although we have
used the word 'adjustment' our procedure should not be confused with
the moist convective adjustment methods used in many numerical models.
The adjus:ment process we will discuss is purely a caonsequence of the

time discretization associated with the numerical model.
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Let us define the atmosphere to be stable to sub-ensemble p if
the cloud work function A(p) is smaller than some critical value Ac(ﬁ).
Thus, the atmosphere is considered to be respectively neutral or un-
stable to each sub-ensemble depending on whether A(p) 2quals or exceeds
this critical value. If the large-scale terms push th2 atmosphere into
an unstable state, it is the job of the dynamic control (2.57) to
determine a mass flux distribution which will adjust the atmosphere
back at lTeast to (but at the same time as close as possible to) the
neutral state for each B subject to the constraint that each sub-
ensemble mass flux be non-negative (see Fig. 2.4). Th’s is the dis-
crete analogue of (2.57) which we will discuss in mathematical form
in the remainder of this section.

Suppose we have n cloud types (where a 'cloud-type' is the dis-

be the clovrd base mass
th

crete analogue of 'sub-ensemble'). Let m
h

B;

flux of the it cloud type and bi be the amount that the i~ cloud
work function exceeds the neutral (or critical) value (bi> 0). If
cloud type j contributes an amount Kij per unit mass flux to the re-
duction of bi (where Kij is the discrete analogue of the kernel

K(p,p”)), we can write

Knt + K]sz + ...+ K]nt > bl
1 2 n
K2]mB + Kzsz + ...+ K2nt Z.bg
1 2 n
Kn1Mg, * Kn2Mg * -+ ¥ Kypg 2 By s
1 2 n
m, >0, my, >0 ... my, >0. (2.58)
By — B, B,
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Equation (2.58) states that an adjustment greater than or equal to b.
must occur for each i and that each sub-ensemble (cloud type) mass flux
must be non-negative.

Each inequality in (2.58) can be converted to an 2quality by
introducing a 'surplus variable' x. For inequality i, the surplus
variable X; represents the surplus adjustment done to work function i.

Thus, inequality i takes the form

The objective is to minimize some measure of the surplus adjustment.

Assuming that this measure is linear and gross in character we can

write
n
minimize )y CiX5
i=1
subject to
Kyom, + Kyom, + ... +K,om, - X, =b
11 B] 12 B2 n Bn 1 1
Koymg_+ Koplflg + .« + Kymp = X5 = by
1 2 n
Kpimg * Kool + - + KanMg = %4 = by .
1 2 n
and
m, >0, my >0 my >0,
By = B, By
X320, %20 ... x >0 (2.60)

where C; are the weights. In more compact vector notation we can

write
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s e > >
minimize <€-X

]
subject to

K m

=22
v ]
|v

o

¥

|V
o

(2.61)
Thus we have ane minimization objective, n adjustment constraints and

2n non-negativity constraints. Solution of the problem yields the n
unknown sub-eisemble mass fluxes, the n unknown surplus adjustments,

and the value of our objective function, .§1 C;X; » Which is a gross
measure of the surplus adjustment. The o;£1mization problem as for-
mulated is easily solved using the simplex method of 1in2ar programming.
From a computational point of view however this 'overadjustment' for-
mulation is not the most convenient way to go since the simplex proce-
dure requires a basic feasible solution with which to start. A simple
reinterpretation of the optimization problem allows the formulation of
the ‘underadjustment case' which can be written (cf. Silva Dias and
Schubert, 1977)

¢

e e . e
minimize ce.x ,

subject to

—IK$B+_§=-_5 .

-+
m

w
v
Q

0. (2.62)

>V
1V

In this case, the initial basic feasible solution required by the
simpiex procedure 1is given by the 'slack variables’ X .
Silva Dias and Schubert (1977) have studied the sensitivity of the

Tinear programming problem to the selection of the weighting function
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¢ and have determined that the most physically reasonable results are
obtained when using ci=b{] (i.e. making the weighting “unction inversely
proportional to the desired adjustment). This is the grocedure we
follow in this study.

2.3 Representation of Other Convective-Scale Processes and Radiation

2.3.1 Surface energy exchanges

As knowledge of the planetary boundary layer has improved, so have
boundary layer parameterization methods. A large number of these
methods now exist in the published 1iterature, many of wshich treat
boundary layer processes in detail employing sophisticated techniques
to estimate surface energy interactions. Although some recent modeling
efforts have begun to make use of some of these approaches (e.g.
Kurihara and Tuleya, 1974; Rosenthal, 1978), the crude issumptions we
have made in section 2.2 regarding the behavior of our model 'mixed
layer' would not seem to justify the immediate use of tiese schemes.
Consequently, all surface energy exchanges are simply parameterized
by the bulk aerodynamic method.

The flux of dry static energy (equivalently sensible heat) from

the sea surface is given by

(F g = cppsch\VSI [Teea-Tsl (2.63)

the flux of total water (water vapor) by
- * -
(Fy)g = pgep [ Wgl [a*(Tggps P)-as] s (2.64)
and the surface stress by

(Fyds = -pscp W] W (2.65)
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where there is no distinction between the exchange coefficients for

heat, moistu~e, or momentum. We have chosen
cD==0.0015, (2.66)
a value whic1 is most consistent with those estimated from observations

(see Businge~ and Sequin, 1977).

2.3.2 Horizontal and vertical diffusion processes

In addizion to the parameterized vertical transports of heat,
moisture and momentum discussed in section 2.2, we also include non-

linear horizontal and vertical eddy diffusion processes. These can be

written as
I Kyu ]
32 au) W), g
Dy = 7 | 3r [“KHr ar] "Tr | P10 o, (2.67)
_ 1l ou) "W g0
Dy = 7r | %r [“KHr ar] Tor YT Vo, (2.68)
_1 2 o1
D = v 3r ["KHr or ] , (2.69)
and
-1 8 39
Dq ™ 3r ["KHr ar ] (2.70)

The lateral eddy mixing coefficient is written as the sum of a linear

and nonlinear term

_ 2
Ky = KH0+ o ID| , (2.71)

where the second term comes from the nonlinear viscosity scheme pro-
posed by Smagorinsky (1963). The quantity |D| is the magnitude of the

total deformation field defined as

o[ EET . e
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and the characteristic horizontal length scale KH is given by
RH = koAr‘. (2.73)

A value of 0.2 is used for the parameter k0° This va’ue has been used
in previous modeling studies of the tropical cyclone giving maximum

4 2. .
m-/s in the eye-

values of the nonlinear term on the order of 2x 10
wall of the model storm (Kurihara, 1975; Rosenthal, 1978).

The turbulent fluxes of momentum (or internal stresses) attribut-
able to convective-scale eddies (other than those due to parameterized

moist convection) are given by
2

K, 90
_ v ou
T ST Th 5 (2.74)
and
K gp2
- _ v oV
Ty T 3 (2.75)

where p is the density and KV is the vertical eddy miring coefficient

defined as

o (2.76)

- 2 gp
Ky = K T 150

v
VO

A constant vertical mixing length of 30 m is chosen fcr QV which cor-
responds to the 'neutral mixing length' used in Kurihara and Tuleya
(1974).

In order to gain some insight into what constitute acceptable
values of the constant eddy mixing coefficients KH0 and Kv , We
proceed with the following analysis. We start with the hor?zonta]

diffusion problem by considering a Tinearized tangential momentum

equation of the form



39

vV _ [ 2 1’] _ [a [ aq ' v]
L=k, |V- =5lv=K |=2=|rZ -S| . (2.77)
ot H0 er H0 ror or r2

Defining th= order m Hankel transform pair as

P(r,t) = f p(k,t) g (kr) kdk
0
o . (2.78)
Bkst) = [ ulrit) ke rar
0 m
the first o-~der transform of (2.77) can be written as
v, [T (. av) v
ot = KHo J [;ar [r ar] - rz] J](kr) rdr . (2.79)

0

Integrating (2.79) by parts gives

v @ [y | 3g(ke)l
Fri KH J vl e - —E-J](kr) rdr , (2.80)

Q

which can be simplified to

_ 2 ) 2 A
= - KHo J vk J1(kr) rdr = - Ky, k“v . (2.81)

0 0

(o3 Lo B
| <>

The solution to the transformed governing equation is

2
-K, k't
Ho

v (k,t) = V(k,0) e . (2.82)
from which we obtain the solution to our original equation (2.77) as

2
-KH k"t

v(r,t) = J G0y e ° g (ke) kak . (2.83)
0
In orcer to see more clearly what effect the choice of KH has on
0
the soluticn, we evaluate (2.83) for an initial tangential wind of the

form
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Figure 2.5 The normalized Hankel transform of the initial wind
field given by (2.84).
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(1l )

LI . (2.84)

"o

v(r,0) =

The Hankel transformed initial condition is

. i oo -rijar?
v(k,0) = . f re J](kr)rdr : (2.85)

0

which can also be written (see Erdelyi et al., 1954, Volume 2, pg. 29)

v(Kk,0) = r:k e o’ (2.86)

This transform is plotted for selected values of o (50, 100, and 200
km) in Fig. 2.5. This figure (which shows Q(k,O) normalized by its
maximum value as a function of k) suggests considerably faster decay
for the smaller of the three vortices since a much larger portion of
its amplitude spectrum is concentrated in high wavenumters. Substi-
tuting (2.86) into (2.83) we obtain the time dependent solution for

initial condition (2.84) as

H
-2 i 1-r2/r§ [1 + g
: r
vir,t) = .1 + g ;?— e ° . (2.87)

. Y'o 0

’

2K, t }-1'

The solution is plotted as a function of r/r0 for selected values of
t (where t is expressed in terms of o and KH ) in Fig. 2.6.
0
It is cften more useful to study the time dependent nature of

some property of the solution such as kinetic energy. Defining the
total kinetic energy of the system to be KEE‘( vzrdr , we use (2.87)
0

to obtain tte normalized kinetic energy as a function of time



r/ro

Figure 2.6 Time dependent behavior of the initial wind field given by (2.84).
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2K, t -2 |

KE T

O [1+ rg ] , (2.88)
0

where (KE)o is the initial total kinetic energy associated with (2.84).

This normal-zed kinetic energy is plotted as a function of dimension-

2K, t
H
0
2

0
kinetic energy with the decay of the maximum tangential wind. The

less time |
r

] in Fig. 2.7. Let us contrast the dissipation of

radius of the maximum tangential wind can be expressed by

2KH t
[g_} - [1+ g} . (2.89)
V=V

0 r
max

0

Substituting this relation into (2.87) leads to an expression for the

maximum tangential wind as a function of time

0

Viax = {1 + 5 (2.90)

r

2KH t ]- 3,
0

which is plotted in Fig. 2.8. Comparison of (2.88) and (2.90) s..ows
that the kinetic energy of the system is at all times decaying at a
faster rate.

Thus, we consider the time it takes to halve the initial vortex
kinetic energy as a function of KH . (The maximum tangential wind for

o

this time is given by v__ = 0.595.) Since previous axisymmetric

max

tropical cyclone {(cloud cluster) models have used values of KHO which
range from 103 m2/s (e.g. Ooyama, 1969%) to 105 mz/s (e.g. Fingerhut,
1978), we have constructed Table 2.1 which shows the time (in days)

it takes to halve the initial total kinetic energy for ro® 50, 100, and
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Figure 2.7 Time dependent behavior of the ncrmalized
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initial wind field given by (2.84).
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Figure 2.8 Time dependent behavior of the maximum wind

associated with the vortex initially given
by (2.84).
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r_(km)
5 0
KH (m=/s)
0 50 100 200
103 5.993  23.971 95.883
104 0.599 2.397 9.588
10° 0.060 0.240 0.959

Table 2.1 The time (in days) required to halve
the initial total kinetic energy of
the vortex given by (2.84) for
r0=50, 100 and 200 km.
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200 km, and K, = 103, ]04, and 105 mz/s. Values of the constant

H
horizontal edd; mixing coefficient in excess of 104 mz/s seem to give
unacceptably high decay rates. Consequently, we have chosen KH =
5.0)(103 m2/s for the numerical results presented in this studyo(cf.
Rosenthal, 1978).
Finally, we address the problem of selecting a reasonable value

of KV by considering the linear equation
0

2
oV _ (9o AV _ .23V
3t [ﬂ ] KV — =yt = (2.91)

where p =constant has been assumed for the purpose of this analysis.

2
Assuming a solution of the form v(o,t) = V et ¥(o) we obtain
2 2

S+lv-o, (2.92!

9g u
the solution of which may be written

- A . A
fWO)—Acos[Eo}an[ﬁ44 . (2.93)

Since we wish only to investigate the role of internal s*resses, we
apply no stress boundary conditions %§-= 0 at o = 0,1 to (2.93) which
yields an expression for the eigenfunctions Yn(c)

A
¥ (o) = Al cos[ 1?—0] ,

n
where (2.94)

An = nmy

The coefficient An is chosen to be

1 n=40
(2.95)

S ? n#0
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in order to guarantee the orthonormality of the eigenfunctions wn .

Thus the complete solution can be written

2
v(o,t) = g v e (M)t y (g) (2.96)
where
1
Vn = J v(o,0) Wn(o) do . (2.97)
0

As an example, we consider the following initial condition

{Gﬂz qZ{zo-oz
-~ +q 0,<0<0
v(o,C) = (2.98)
{0-02 1]2 -[2 g -0, ]]
- + 0,<0<0
030, G109 2—"—="3

where 01==0 and c3='l. From (2.97) we have

(02 G-, 2 G-,
Vn = An ) [_:O? -1] [2 _02 +]] cos (nﬂO) do
0
og' 0-0p 2 [ 0©-0,
- — =1 2 +1| cos (nmo) do ¢ , (2.99)
]-02 1-02
0
which when integrated by parts gives
V, = 4
; s (2.100)
ClVT? n
V = - [(-1)"+1-2cos(nm/2)]
n 4
(nm)

where ¢y = 96 and we have chosen Oy = 3% . Substituting this result

into (2.96) gives the solution
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o 2 W2
vio,t) =%-) - C]4 [(-1)"+1 - 2cos(nr/2)] e‘(nﬂu) t cos(nmo).
=]

() (2.101)

n

The solution at t=0 and t=1 day is shown for three different values

of uz (which are interpreted in terms of KV assuming p=0.92 kg m"3
o}
and a surface pressure pS of 1000 mb) in Fig. 2.9. The use of KV =
0

25 m2/s as n Anthes (1977) appears from this analysis to produce
an unacceptably large modification of the initial profile after one
day. Although Kv0==5 is more reasonable, we choose KVO =1 for the
numerical simulations conducted in this study since the vertical
diffusion is meant to represent turbulent momentum transport attribut-
able to processes other than parameterized convection. In a Tinear

sense, we assume this is a small effect.

2.3.3 Dry convection

If the potential temperature is ever found to decrease with height,
we assume that convective-scale dry convection will occur and that a
dry adiabatic Tapse rate will result. This dry adiabatic adjustment
(or dry convective adjustment) is accomplished with a orocedure
developed by J. W. Kim and A. Arakawa for the UCLA GCM, and is de-
scribed in Appendix C.

2.3.4 Llongwave and shortwave radiative processes

The efects of longwave and shortwave radiation are included by
a simple radiative parameterization scheme in which the term QR
is determined as the weighted average of a perturbed and unperturbed
net radiative heating rate. Four radiative heating profiles are con-
tained in a lookup table in the model, consisting of a longwave and

shortwave orofile for both the convectively disturbed and convectively
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suppressed cases discussed by Cox and Griffith (1979). These profiles
are shown in Fig. 2.10. The net radiative heating rates (for both the
disturbed and suppressed case) are obtained as the sum of their

respective Tongwave and shortwave components
Q=1Q * Qy (2.102)

where the shortwave component is given by

Qg (t) = max (2.103)

and ﬁgw is the shortwave component averaged over the twelve daylight
hours (see Fig. 2.10). The total radiative heating rate QR/cp is
obtaired ¢s a weighted average of the two profiles (disturbed and

suppreééed) determined above according to the relation

QR = (1-a) quppressed ta Qdistur‘bed ’ (2.104)
The weighting parameter is given by
0
a = max 1 (2.105)
max min

where RH is an average relative humidity in the upper troposphere.
Presently, we obtain RH from the upper four layers (~ 200mb) of the
model and use values of Eﬁﬁax:=0'85 and ﬁnﬁin::0'45‘

2.3.5 Summary of the convective-scale source terms and radiation

Let us now summarize the convective~scaie source terms which

appear in the large-scale governing equations. They ccnsist of the



many processes which have been described in sections 2.2 and 2.3 and
can be written as

aF

wK,u e Z
-9 “u, s u . H |, g 8 [ g av)
ST E e Y o [“KH’“ arJ - T 5 (I gy, (2.108)
IF = 7K, v ( 2
=9 v, )3 vy _ _H 9 3 do N
SV T 30 * T | or (NKHr BY‘J r * T 3¢ \K\] - 351 ° (2-]07)
sp= 1g 2 +LR}+1——8—[Kr-‘)—U+Q (2.108)
T Co T 3o s-Lg ; mr ar [TH erj R 2 )
=9 2 - D a9
Sq T 3 Fq+5L R+ T ar ["KHr Br] s (2.109)

2.4 large-Scale Condensation

The convective scale condensation, evaporation axd precipitation
caused by the parameterized cumulus convection discus:ed in section
2.2 can occur when the atmosphere is not saturated ir a large-scale
sense. In addition, large-scale condensation, evaporation and precip-
itation can occur when the air becomes saturated and remains saturated
in a large-scale sense.

Neglecting for the moment convective-scale contrribusions to the
heat and moisture budgets ailows the thermodynamic equation (2.6) ard

water vapor mass continuity equation (2.8) to be written as

Q% . ﬁL. Q% = é; (C-E) (2.110)
p p
and
dg _ -(C-E) (2.111)



53

where C and E are respectively the rates of large-scale condensation
and evaporatizn per unit mass of dry air. If the air is saturated and
remains saturated, E vanishas and C is related to the individual time

change of the saturation mixing ratio such that

- dg*
C=3 - (2.112)

Thus, if in the course of integration the air becomes super-
saturated on the scals of the grid, large-scale condensation and
release o7 latent heat is assumed to occur. The excess water removed
from a superseturated layer is allowed to precipitate into the next
Tower layer ard to evaporate completely. This process mey bring that
layer to supersaturation, in which case the excess is removed and
precipitated to the next lower layer. When the bottom layer of the
model is reached, an excess is assumed to fall to the earth's surface
as large-scale precipitation.

The procedure described above is identical to that developed by
A. Arakawa and J. W. Kim for the UCLA GCM. However, the computational
procedure 2mployed in the model is somewhat different and is described

in Appendix C.



3.0 THE LATERAL BOUNDARY CONDITION

Numerical simulations of tropical cyclones are invariibly attempted
using models of limited horizontal extent, making the task of formulat-
ing an appropriate set of lateral boundary conditions unavoidable. The
model used in the present study and discussed in chapter 2 is no excep-
tion. The presence of a lateral boundary to the computational domains
of these models is an artificial construct mandated only by the Timi:a-
tions of the computer. Thus it is important that one seek a condition
which minimizes the impact of this artificial boundary on the dynamical
behavior of the phenomena being simulated inside it.

In a tropical cyclone, the Targe amount of latent heat released in
deep convection continually disrupts any approximate balance of the
mass and wind fields. The way in which the atmosphere responds to this
heating (through the process of geostrophic or gradiert adjustment)
provides a basis for attaching great importance to the formulation of
lateral boundary conditions in tropical cyclone models. Most of the
available potential energy generated by latent heat release (especially
on small horizontal spatial scales) is partitioned to jravity-inertia
wave motion. Examples of this energy partition for axisymmetric flow
on an f-plane can be found in section 3.3 of this thesis, and ‘in
Schubert et al. (1980), while examples on the equatorial B-plane can
be found in Silva Dias and Schubert (1979). This has led us to the
view that tropical cyclones may be highly radiating systems. Conse-
quently, if the process of geostrophic or gradient adjustment s to
be properly represented, it is essential that the late-al houndary con-
dition be able to transmit the gravity-inertia wave energy generated by

the release of latent heat in the interior of the model.

54
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There are two broad classes of tropical cyclone models: balanced
models and primitive equation mode’s. In a balanced model (e.g. Ogura,
1964; Kuo, 1965; Qoyama, 1969z, b; Sundqvist, 1970a, b) the flow is
assumed to be axisymmetric and in gradient wind balance. Since gravity-
inertia waves are then filtered, the transient aspects of the geostroph-
ic adjustment1 process are not simulated. Primitive equation models,
however, may be axisymmetric (e.g. Yamasaki, 1968a, b; Rosenthal, 1970,
1971, 1978, Kurihara, 1975) or asymmetric (e.g. Anthes et al., 1971a, b;
Anthes, 1972; Harrison, 1973; Kurihara and Tuleya, 1974; Mather, 1974;
Madala and Piacsek, 1975; Jones, 1977; Kurihara et al., 1979) and in
either case the geostrophic adjustment process becomes one of the im-
portant physical processes which must be accurately simulated. Because
of their filtered nature, the formulation of lateral boundary condi-
tions in ba anced models is not so difficult. Discussions of this
problem can be found in Ooyama (1969a) and Sundgvist (1970a). The
problem of “ormulating lateral boundary conditions for primitive equa-
tion models is not so well understood. We will confine our discussion
of this probiem to the formulation of a lateral boundary condition for
axisymmetric primitive equation models.

A survey of the Titerature on primitive equation tropical cvclone
mcdels indicates that the lateral boundary conditions on the normal
wind component which have been used involve either the condition of
zero divergence (Rosenthal, 1970; Anthes, 1971, 1877; Enthes et al.,
1971a, b; Jones, 1977) or the condition of zero radial wind (Yamasaki,

1968a, t; Kurihara and Tuleya, 1974; Kurihara, 1975; Rosenthal, 1978}.

.' . a r
" ke sh:11 henceforth use the term ‘geostrspnis zdjustment’ in the
broad sense »f adjustment to either geostrophic or gradient balance.
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Rosenthal (1971) has examined the sensitivity of an ax’symmetric primi-
tive equation tropical cyclone model to these two boundary conditions
as functions of the computational domain size. The cr-terion used to
assess the behavior of the boundary conditions was the magnitude of
the maximum surface wind attained during the course of the numerical
integration (and to a Tesser extent, the time required to reach this
mature state). Results of the numerical integrations indicated that
the maximum surface winds attained in those experiments incorporating
the condition of zero divergence were relatively insensitive to the
size of the computational domain. Surface winds in excess of 40 m/s
were always achieved. In contrast, when using the concition of zero
radial wind, the model produced weaker surface winds which were highly
sensitive to the size of the computational domain such that there was
a linear increase of the maximum surface wind with domain size (~16
m/s per 1000 km). After extrapolating these results tc domain sizes
in excess of 2000 km, Rosenthal concludes that by enlarging the com-
putational domain to somewhere between 2000 and 3000 km, differences
in the numerical result attributable to differences in boundary condi-
tions can be minimized. We believe that this is not the only viable
interpretation of these results. Another interpretation is that in a
gross sense (since the transient behavior of the simulated storm is
not considered) those experiments incorporating the condition of zero
radial wind begin to behave more 1ike those incorporating the condi-
tion of zero divergence as the computational domain is increased in
size. The broader issue of whether either boundary condition behaves

realistically is not addressed.
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Thus, we have chosen to approach the problem of lateral boundary
conditions from a different, essentially linear, point of view, with
the goal of minimizing the reflection of gravity-inertia waves, and
consequently the distortion of the geostrophic adjustment process.

We shall show that such false reflections can be controlled by the use
of a gravity wave radiation condition, if the condition is applied
separately to each vertical mode. The application of an interface
boundary condition to selected vertical modes has been discussed for
limited area nested forecast models by Elvius (1977).

Since the primitive equation tropical cyclone model discussed in
chapter 2 is based on the sigma coordinate (as are many others), we
derive in section 3.1 a linearized system of equations formulated in
this coordinate. The linearized system can be split into two problems:
the vertical structure problem and the horizontal structure problem.
In sect’on 3.2 we solve the vertical structure problem obtaining the
eigenvaiues and associated vertical structure funciions for both an
atmosphere characterized by a constant static stability and a mean
tropical static stability. Using these results we explore in section
3.3 the energy partition between geostrophic flow and gravity-inertia
waves for an unbdalanced initial condition in the mass field., The
conclusion that most of the initial available potential energy is
partiticnad to gravity-inertia wave motion motivates a search for a
radiaticn condition which has Tow reflectivity (section 3.4). Since
the bourdary condition found in section 3.4 is only an approximate
conditicn, its usefulness is explored numerically {section 3.5) by
comparirg it with several other conditions, including those recently
proposzc for use in convection models by Orlanski {1976}, Klemp and

Withelmson {1978), Clark (1979) and Lilly {1550,
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3.1 Linearization of the Large-Scale Geverning Equations

For the purpose of our analysis it is more convenient to consider
the linear version of (2.2)-(2.7). Neglecting the convective-scale
source/sink terms, and large-scale condensation and evaporation terns,

and linearizing about a basic state which is at rest, we obtain

au

S +§—r(¢+c?iﬁ) =0, (3.1)
%%-+ fu=0, (3.2)

.y [ gg} -0, (3.3)
%{%+ (1-3%]57r}+$8=0 , (3.4)

where Y==cp/cv and the basic state static stability has been defined

as S = —|— -3
P

Following the approach of Robert et al. (1972), Daley (1979),

- RF[F&' dT]

Temperton and Williamson (1979) and Kasahara and Puri (1980) we define

two new dependent variables & and w by

o =¢+toam (3.5a)
=76 +g L (3.5b)
. .

The use of (3.5) allows (3.1)-(3.4) to be written

(3.6)

g tfu=0, (3.7)



—oru . 3w _

T s T ag 0, {3.8)
— 3 I36) _ ,
T 55‘{58-+ Sw =0, {3.9)

The boundary conditions {Z2.8) become

Q

w=0 at o=0 and 9 _ o

0 at o =1. (3.10)

Q2

Equations (3.8) and (3.9) can be combined to eliminate w so that we

obtain

> [a (1 39} _aru_

55[30 {S 80}]'r8r 0. (3.11)
Thus, the governing system of linear equations consists of (3.6), (3.7)

and (3.11) in the unknowns u, v and & . We will now assume that the ¢

dependence of u, v and & is separable from the (r,t) dependence, i.e.

u(r,o,t) u(rst)
v(r,o t) vir,t)} ¥(o) . (3.12)
r,o,t) 8(r,t)
Substitution into (3.6), (3.7) and (3.11) yields
Nt fv + ™ 0, (3.13)
Bv -
B_t + fu = 0 ’ (3.14)
88 aru -
L+gh =0, (3.15)
d 1 4y 1 _
@[§ %}+g—hqf—0 , (3.16)

where gh is the cseparation constant. The boundary conditions for

(3.16) can be obtained from (3.10) and are
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ay ] a LS, )
P 0 at o=0 and ot E_a_w =0 at c¢=1. (3.17)

Equaticn (3.16) is the vertical structure equation for our problem
and, along with boundary conditions (3.17), gives rise to a countably
infinite set of eigenvalues ghn, and a corresponding set of vertical
structure functions (eigenfunctions) Wn(o). Since (3.76) and (3.17)
constitute a Sturm-Liouville problem, the vertical structure functiors
Wn(c) form a complete and orthogonal set on the interval [0,1]. They

may also be normalized so that

f]w (6) ¥ (o) d {] nen (3.18)
(0} = .
0 m n o 0 m#n

Accordingly any function of (r,o,t) can be represented by the series

Fir,o,t) = § F (r,t) ¥ (o) , (3.19)
n

where ?n(r,t) is obtained from
F(r,t) = J] Flr,o,t) ¥ (0) do . (3.20)
0

We shall present some solutions of (3.16) and (3.17) i1 section 3.2.

The Tinear system (3.13)-(3.15) constitutes the horizontal struc-
ture problem and is more commonly referred to as the divergent baro-
tropic system of equations, or the shallow water equations. In their
simplest context (3.13)-(3.15) govern small amplitude perturbations fin
a rotating, homogeneous, incompressible, inviscid and hydrostatic fluid
with a mean free surface height h. We note that the phase speed of a
pure gravity wave in such a fluid is given by (gh)l/2 . For the more
general stratified problem (3.13)-(3.15) govern the horizontal be-

havior of each of the vertical modes.arising from the sclution of
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(3.16) and (3.17). Consequently, the eigenvalue (ghr)%, where h, is
known as the equivalent depth, is interpreted as the pure gravity wave
phase velccity of the associated vertical mode Wn(c)u In section 3.4
we shall use (3.13)-(3.14) to determine an approximate outgoing wave
condition and to examine the reflectivity of boundary conditions in

general.

3.2 Analysis.of the Vertical Structure Problem

The solution of the vertical structure problem requires the spec-
ification of the basic state static stability. The zimplest case that
can be considered is one in which the static stability is a constant.
For such a situation the normalized eigenfunctions of (3.16) and (3.17)

are given by
%

¥ (o) = [ ?1 ] cos Ao (3.21)
1-+(2An) sin 22

5
where Ay = &ﬁ%% is determined from the eigenvalue relation
n
A tan A = —>—  n=0,1,2,... . (3.22)
n n —--—
T o (1)
A good approximation to (3.22) is

(gh )%= [T a (1)] *

W

%+ S -
(ghn) o for n=1,2,3,... . (3.23)

We see from this approximation that except for the external mode (n=0),
the eigenvalues (ghn)% are proportional to 1/n. The first eighteen
exact and approximate eigenvalues, determined from (.22) and (3.23)

respectively, are listed in Table 3.1. These results are based on

T=90 kPa, (1) =0.861 mkg ', and S%=162.77 m s™'. The first Five
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eigenfunctions determined from (3.21) and (3.22) are shown in Fig.
3.1a. These eigenfunctions portray the vertical structure of the
dependent variables u, v and &. The variable w has a vertical struc-
ture proportional to -An'1 %g-, which is plotted for the first five
modes in Fig. 3.2a.

In the tropical atmosphere the basic state static stability veries
considerably. This is illustrated in Fig. 3.3 where the vertical pro-.
file of SLé was calculated from the mean tropical clear area temperature
profile of Gray et al. (1975). The constant value o~ SI/2 used in tre
earlier calculations is indicated by the vertical dashed Tine. The
vertical structure problem (3.16) and (3.17) can be solved numericelly

1 . . .
for this more realistic S profile. The eigenvalues which are obtzined

are shown in the last column of Table 3.7, and eigen‘unctions Yn and

dy
-2 gL are shown in Figs. 3.1b and 3.2b respectively. We see that

n do
the effect of the variable static stability is primarily to increase
the propagation speeds of the higher order vertical modes. This is
1
probably & consequence of the large values of S? in ‘the upper tropo-

sphere. UWe also note that the vertical structure functions are

strongly modified in this region of high static stability, such that

the vertical wavelengths are shortened and the amplizudes are increased.

3.3 Importance of the Lateral Boundary.Condition

Before considering several lateral boundary conditions in the next
section, we attempt to establish the importance of carefully formulated
lateral boundary conditions in tropical cyclone models. The argument
presented in this section is that when latent heat generates available

potential energy on horizontal scales typical of a t~opical cyclone
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Vertical Constant Static Stability Static
Mode Stability
Equ. (3.22) Equ. (3.23) of
(exact) (approximate) Fig. 3.3
0 294.15 278.39 287.55
1 50.14 51.81 51.61
2 25.69 25.91 26.81
3 17.21 17.27 19.40
4 12.93 12.95 14.81
5 10.35 10.36 11.80
6 8.63 8.64 9.77
7 7.40 7.40 8.39
8 6.47 6.48 7.42
9 5.75 5.76 6.64
10 5.18 5.18 6.02
11 4.71 a.1M 5.49
12 4.32 4.32 5.04
13 3.99 3.99 4.65
14 3.70 3.70 4.31
15 3.45 3.45 4.02
16 3.24 3.24 3.76
17 3.05 3.05 3.53
Table 3.1. The first eighteen exact and approximate

eigenvlaues (ghn)%, determined from (3.22)
and (3.23) for the constant static stability
case, and numerically for the static stabil-
ity profile of Fig. 3.3. Units arem s .
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Figure 3.3 Square root of the basic state static stability
computed from the mean tropical clear area
temperature profile of Gray et al. (1975).
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in Tow latitudes, only a small fraction of the energy ends up in
balanced flow. The major portion of this energy is partitioned to out-
ward propajating gravity-inertia waves. This lopsided energy partition
can be illustrated with a simple example.

For vertical mode n we can show from (3.14) and (3.15) that the
arvp F -

T §ﬁ;- 9, s locally invariant. Thus, the

initial and final potential vorticity fields are related by

potential vorticity

drv (ree) o drv (r,0) ¢
M g () T a g B (n0) - (3.28)

If we assume that the final tangential flow is geostrophic, that the

initial vorticity vanishes and that the initial geopotential is given

by
~ -ghn r<a
@n(r,O) = {
0 r>a , (3.25)
then (3.24) reduces to
dzan(r,w) d@n(r,m) 2 . 2 rca
4 Fyar gh, 2y (rs=) = { (3.26)
0 r>a

The solution of (3.26) which remains bounded at the origin and at
infinity ard which possesses continuous $n(r,w) and Vn(r,w) at r=a is

1

(gh )*
L n f f
-fa(gh )*{——- K [—a]l [ r” r<a
. "L e )% ] 0 Lan, )
<I>n(r,w) =
-fa(gh )1/2 I [ f 1/ajl K [ f r] r>a,
" T Lgn %] Lign, )

(3.27)

where Im ard Km are the order m modified Bessel functions.
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The sum of the kinetic energy and the available rotential energy
associated with the final geostrophic flow, K, *P_s cin be obtained by

multipiying (3.24) by %n(rgé) and integrating over arca. The result is

1 - < s E—" 2 N w\ ] ~ 2 " 00_3 -
Koo+Pcc = J{ 2 g_“n (Ys J + ghn @ﬂ (s 3 )—ja ‘ad}"
0 (3.28)
g 1. ~
= — b 8 {re) o (r,0) rdr
2ghy Jg M n

Substituting {3.25) and {3.27) into (3.28) and normalizing by the

initial available potential energy PO we cbtain

K, +P :

oc

s a2k | —f Al [ E
5 1- 2K, f ghn)% aJ I L(ghn)% 2

(3.29)

0 L{

The fraction of the initial energy which ends up in geostrophic flow,
K +P
—5%7—33 , yields a single curve if we plot it as a furction of the

0
dimensioniess horizontal scale f T
{ 2
\ghn)
pl

otted in Fig. 3.4 the energy parti-

a . However, for convenient

physical interpretation, we have
K +P
tion wP = as a function of the dimensional horizortal scale a, at
0 i
20°N, for the first five vaiues of (ghn)2 given in the Tast column of

Table 3.1. For a given horizontal scale a, the difference between

K +P

mp = and unity represents the fraction of the initial energy parti-
o}

tioned to outward propagating gravity-inertia waves. HWe see that for

horizontal scales <300 km, the majority of the initial energy is
partitioned to gravity-inertia wave motion. In light of the large
amounts of latent heat released in tropical storms it would be reason-
able to conclude that the gravity-inertia wave energy leaving the
vicinity of a tropical cyclone must be substantial, especially for tie

low order vertical modes. Although the energy partition curves shown
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Figure 3.4 The fraction of the initial energy which is parti-
tioned to geostrophic flow as a function of the
horizontal scale of the initial geopotential dis-
turbance. The curves have been computed using
(3.29) with the first five values of (gh )% given
in the last column of Table 3.1 and with'an f
corresponding to a latitude of 20°N.



in Fig. 3.4 depend on the form of the initial condition chosen, these
curves are typical of other examples we have investigated (Schubert
et al., 1930}. They show the very Tow efficiency of geostrophic energy
generation by tropical cyclone scale heating in Tow 1atitudes and lead
naturally to the view that, in terms of gravity-inertia wave energy,
tropical cycleones should be regarded as highly radiating systems.
There are of course real physical situations in which gravity-
inertia waves might be reflected back toward their source. However,
the imposition of a lateral boundary to the computational domain of
a numerical model should not result in the refiection of incident
waves. Imoroper reflection of gravity-inertia waves in a model which
carries water vapor as a dependent variable can becomz intolerable
since the vertical motion field associated with these reflected waves
(see Figure 3.2b) can interact nonlinearly with the moisture field o
produce an erroneous pattern of latent heat release. Consequently, a
poorly formulated lateral boundary condition may indirectly contribute
to significant alterations of the numerical solution, especially wizh
regard to the transient behavior of the simulated disturbance.

3.4 Analysis of the Horizontal Structure Problem

3.4.1 An ‘'exact' outgoing wave condition

A fairly thorough study of open boundary conditions for dispersive
waves has been conducted by Bennett (1976). We apply his approach to
our problem by considering the horizontal structure equations (3.13)-
(3.15) for the vertical mode n. Defining ;(r,s) as the Laplace trans-
form of ?(r,t) and assuming no initial disturbance for r>a, we trais-

form (3.13)-{2.75) and eliminate 5n(r,s) and ;n(r,s) to obtain
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2~ ~
d-u du 2.2
2 " 'n n | {s°+f%) 2 ~
r tr4 -H )" +1] u =0 for r>a. (3.30)

The solution of (3.30) which remains bounded as r—= is given by

2, c2\?

Gn(r,s) = A(s) K]U%:—]/z r] for r>a. (3.31)

It can be shown that the transformed radial wind component Gn(r,s)

also sat: sfies

1/~
dr? u 2, c2%
n s™+f)* -
'—d—r_K'l[[—gﬁn—] r} =0 forr>a.

: (3.32)

An exact outgoing wave condition can be obtained by inverting (3.32).
Unfortunately this procedure yields an expression which is quite com-
plicated and of questionable practical value. This is more readily
illustrated if we utilize the large argument asymptotic form of the

modified Bessel function K] to simplify (3.32) to

L ~ L~
- , dr*u L 2, :2\% dr? u
su, + (ghn)12 o n - (ghn)12 [ﬁs +; )2';5} T " for r>a R
r 4dr (s™+f=)= rdr —(333)
which when inverted gives
~ 15/\ %A 1
3, (rst) y, e (r,t) y rt coarfu (r,tt)
o (ahy)® = f(an ) [0y R(et)] —— dv
réar 0 r2oar
for r>a . (3.34)

Relationskips of this kind require that we store and repeatedly sum
(with different weights) boundary values of Gn and its horizontal
derivative. The storage requirements alone are effectively equivalent
to allowing the computational domain to expand in time. Since this is
what we are attempting to avoid, the idea of using an exact outgoing

wave condition will be abandoned for practical reasons.
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3.4.2 Reflectivity analysis

We are now faced with the problem of finding an approximate
boundary condition which will keep the distortion of the adjustment
process within some tolerable 1imit. This can be accomplished by
analytically studying the reflectivities of boundary conditions in
general. Ue begin by noting that the system (3.13)-(3.15) has solu-

tions of the form

o~ - (- - _ =)
un(v,t)ﬂ‘ B 1 H#1)(kr) Hleﬁnﬁ
St o« | o If (1) (2)r TVt
vn(r,t) | - v, § H (kr}) 1+R H, (k) $ e ,
~ | igh k
NG N B B R A TN I I
n \ / (3.35)

2 2.5 . .
+ghnk )%, k is the horizontal

where the frequency vy is given by v, = (f
wavenumber, R is a complex constant, and Hél)(kr)and ﬁéz)(kr) are the
order m Hankel functions of the first and second kind. The use of

asymptotic expansions valid for large kr allows (3.35) to be written

—an(r',t)1 m 1]

o e 2T e [t -1‘(kr+\)nt)}
s = L - = :
vn(r,b/ " [ﬂkr] e o e ile .

. ghnk
o (r,t _
[ 8, (r,t) | v (3.36)

The first term in both (3.35) and (3.36) corresponds to an outward
propagating wave while the second term corresponds to an inward propa-
gating wave. Thus, at large radius a {e.g. the radius of the model
boundary), the asymptotic form of the outward propagating wave satisfies

the radiation condition
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=0 at r=a. (1)

If a disturbance in the form of a wave packet centered on wavenumber

k approaches the boundary, the use of boundary condition I should
result in Tow reflectivity as long as ka>>1. The primary disadvantage
of I is that it is difficult to apply in physical space because khow]-
edge of%ll is required. However, since -\—;(n-+(ghn)!E as k>, we might
approximate I by

L oA
u arz 4
— 4+ (gh )!‘é —1/——"-=0 at r=a, (I1)

1
5 .
2 is known

which is ruch easier to apply in physical space because (ghn)
from the solution of the vertical structure problem. This approxima-
tion is equivalent to neglecting the Coriolis parameter and confining
our study to non-dispersive or pure gravity wave motion. For such a
physical situation II can be obtained directly from (3.34) by setting
f=0. One additional approximation can be made to II, and that is to
neglect the effects of cylindrical geometry, which gives
ou 5 U

n n _ =
W"‘ (ghn) "g'r——o at r=a . (III)

Let us also consider the two most widely used boundary conditions in

tropical cyclone models whichare the condition of zero divergence, -

Brﬁn
AT =0 at r=a, (1V)

and the condition of zero radial wind,

Gn=0 at r=a . (v)
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The refiectivity of each of the conditions I-V can be found by
substituting (3.35) and solving for |R| . The mathematical expres-
sions are given in Table 3.2. Since conditions IV and V have unit
reflectivity and the reflectivity of III is larger than II (Schubert
et al., 1980), we confine the remainder of this discussion to a com-
parison of I and II. As can be seen from Table 3.2 the reflectivity
of boundary condition I is a function of ka only, while the reflec-

tivity of boundary condition II is a function of both ka and

v
—2— . In Fig. 3.5 we have drawn isolines of |R| in the
(gh,) %
v
(ka y — ny plane for boundary condition II. From Fig. 3.5
(gh, )%
one can also obtain the reflectivity of I since it is identical to
v
the reflectivity of II along the line ————l%;— =1 . As long as
v (gh,) %k

Y
(ghn)2 is within about 10% of 1?— and ka > 1.5 , the reflectivity

can be held under 5%. It should be noted, however, that there is
more or less an optimal domain size beyond which little improvement
in the reflectivities can be expected. To illustrate this more

clearly we have plotted the reflectivities of boundary condition II

ho )%
for selected dimensionless wavenumbers (g 2) k as functions of
dimensionless domain size ——1313; in Fig. 3.6. In this diagram we
(gh )=
n

see that by choosing the domain size properly, the reflectivity for
any wavenumber (or family of wavenumbers) can be minimized. As an

exampie, in order to minimize the reflectivities for wavenumbers

(gh,)*

7~ k> 10, the domain size need be no larger than fa

I
(gh,)*
It is interesting to note that an optimal domain size corresponds

= 0.6,
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Boundary Condition

Reflectivity

(I11)

IR ekl
r3ar
A 31//\
du L or
7ﬁ?'+(ghn)2 -
reor
U L ou
n L n _
Bt tan)® 5
Brun "
rar
un =0

IR|

IR]

IR]

"
-

R

fl
—_—

IR]

Table 3.2 Reflectivities for the various boundary conditions.
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to the approximate wavelength __EEjLT_ of the wavenumber for which

k(gh )
the reflectivities are to be minimized.

In order to understand.the implications of the reflectivity rela-
tions for a particular model situation it is more convenient to display
the results in dimensional form. The reflectivities of the eighteen
vertical modes which have the eigenvalues Tlisted in the last column
of Table 3.1 are illustrated in Fig. 3.7 for boundary condition II.
These reflectivities are calculated for a domain size of 960 km, and
for an f corresponding to a latitude of 20°N. We see that, for a
given wavenumber k, a larger fraction of the incident wave is reflected
as the vertical mode is increased. This result is due tc the fact that
the higher order modes propagate at a slower rate and herce have Tonger
periods. Thus, the Coriolis force plays a larger role ir the dynamics
of these waves, but is neglected in the boundary condition since vn/k
has been approximated by its pure gravity wave value (g?yn)l/2 Accord-
ingly, boundary condition II is mode dependent, while boundary condi-
tion I is mode independent, its reflection curve being irdistinguish-
able from the n=0 curve in Fig. 3.7. Even though boundary condition
II does have higher reflectivities than I, for low order vertical
modes and horizontal wavelengths smaller than the size of the computa-

tional domain, the approximation made in boundary condition II does

not introduce serious refYection problems.

3.5 Numerical Examples

3.5.1 Single vertical mode

In this subsection we shall compare the results of numerical

integrations of (3.13)-(3.15) using boundary conditions "I, IV and V.
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Figure 3.7 The reflectivities of boundary condition II for the

modes which hava the eigenvalues Tisted in the Jast column of Table 3.7.
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and for an f corresponding to a latitude of 20°N.
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In addition we shall show resuits obtained using the numerical extrap-

olation technique of Orlanski (1976). In Orlanski's method the con-

dition
3u 3 _
§E'+ C o = 0 (Via)

is used to predict U at the model boundary after

(VIb)

(o]

t

1
Qi
I B0 Tg ) f =04

has been used to diagnose c at the previous time step just inside the
model boundary. The estimate of ¢ is not allowed to become negative
nor to exceed the radial grid interval divided by the time step. For
further details the reader is referred to Orlanski's (1976) paper.

In order to conduct the following single mode tests we have made
use of a numerical model for which the horizontal space differencing
method corresponds to scheme B (staggered grid) of Arakawa and Lamb
(1977). (The finite difference analogues are given in Appendix D.)
The time differencing is accomplished with a leap frog scheme coupled
with an Asselin (1972) time filter (see Appendix A.2, Time differencing).
The model consists .of. 43 grid points spaced 0.0125 dimensionless unmits
apart (i.e. ar=0.0125 (gh )/f).

In the experiments illustrated here, the fluid is initially at

rest but has a free surface perturbation

2
2 4-—r2/r02 ~r2/2r0“
1+ -1le

r - = , (3.37)
op 2 2 2
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where o is a measure of the perturbation half width which has been
specified to be r0=:0.1 (gh)%/f. This initial value problem was first
studied by Obukhov (1949). For the Tinear problem, the final geo-
strophically adjusted state can be obtained analytically by solving
the potential vorticity equation (Schubert et al., 1980, section 6),
providing an independent check on the performance of the model.

The results of five experiments will now be shown, the first being
the control, or 'infinite domain', experiment and the remaining four
using boundzry conditions II, IV, V and VI. In the 'infinite domain'
experiment the computational domain was expanded to eliminate all pos-
sible boundary effects on the solution in the interior 43 grid points
of the model. The results of the five numerical tests are shown in
Figs. 3.8 and 3.9. Fig. 3.8 is common to all those given in Fig. 3.9,
and shows the early propagation of the wave which is excited in the
u field (the divergent component of the wind). Up to time ft=0.25,
the numerical solutions are essentially the same for all five experi-
ments. After this time, however, the solutions diverge due to the
differences in the lateral boundary conditions, as can be seen in
Fig. 3.9. Fig. 3.9a shows the results of the control experiment and
can be regarded as the ideal result since there are no boundary effects.

At the final time level shown (ft=0.85), the computational domain is
fr

1
(gh)=
the solution is well within 1% of the analytically calculated final

< 0.5,

essentially in geostrophic balance. In the interior

adjusted state. The remaining figures show the numerical solutions
for those experiments incorporating boundary condition II (Fig. 3.9b),
boundary condition VI (Fig. 3.9c), boundary condition IV (Fig. 3.9d)

and boundary condition V (Fig. 3.9e). Clearly, boundary conditions
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IT and VI give results closest to the control, with >ocundary condition
IT producing the least reflection.

3.5.2 Fully stratified case

The results of section 3.5.1 are now extended to the more general
case of a fully stratified model atmosphere. In this section we com-
pare the behavior of boundary conditions II, IV, V and VI in the
stratified numerical model and consider one additional boundary cordi-

tion for which the relation

Q

Hec=y (VII)
is applied at the lateral boundary grid points whers the phase velocity
c is a constant chosen to be representative of the first internal mode
of the model (Klemp and Wilhelmson, 1978).

The numerdical experiments are conducted with a dry, adiabatic,
inviscid version of the tropical cyclone model described in section
2.1 (where the finite difference equations can be found in Appendix A).
The horizontal and vertical resolution (and domain) is the same as
described in section 2.1.

Boundary conditions IV, V, VI and VII are all applied level by
level. Boundary condition II, however, is applied toc each vertical
mode. Thus, in order to apply boundary condi%ion II it is necessary
to project the boundary values of the dependent variables onto the
vertical structure functions and thus obtain the amplitude of each
vertical mode. In practice, we obtain these vertical structure func-
tions via a method which will more accurately represeat the effects of
the vertical differencing scheme we have employed. Tnis approach can

be summarized as follows. Noting that boundary condition II is
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Figure 3.10 The vertical motion field w at t=6 hrs for the fully
stratified initial value experiments employing (a)
"infinite domain', (b) boundary condition II, (c)
boundary condition VI, (d) boundary condition VII,
(e) boundary condition V and (f) boundary condition IV.
The contour interval is 2.5 mb/day with dashed lines
indicating sinking motion.
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asymptotically valid as k+«, and that in this case ¥ can be elimi-

nated, we can linearize (2.2)-(2.7), assume a solution of the form

u(r.o,t) G(o) 0 (k) + R 1B (k) ]
T(r,o,t) b = ?(g)[no“)(kr) + R HO(Z)(kr')] IVt (3.38)
w(r, t) . [HO“)(kr) + R HO(Z)(kr)]
and obtain
vr e (T . P17 —~ |
iqu +j W(l{t:'*t?‘:qdq'+0aﬂ =0, (3.39)
o] T P
— '] —_—
A~ odT (s (dT o |
i T\:-T-Egcfoud0+{aa—-15] Jo udo 0, (3.40)
A 1
1}—%-&? Jﬁdcy:O. (3.11)
0

In practice we follow the above procedure with the governing equations
in differential-difference form (radius and time being continuous,
sigma discrete). Then the above integrals become sums and we can
regard the resulting problem as an algebraic eigenvalue problem, with
E— as the eigenvalue. This procedure is summarized fcr our axisym-
metric model in Appendix E. For a vertically discrete model atmosphere
with N velocity Tevels (3.39)-(3.41) yields a system c¢f either 2N or
2N+1 vertically discrete equations depending on whether the tempera-
ture Tevels are staggered. For Lorenz (1960) type vertical differ-
encing schemes (non-staggered temperature as in the present study)
there are 2N+1 vertically discrete equations. This allows the mass
field one additional degree of freedom which is not urder the control

of the geostrophic adjustment process. Although the results presented
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here are from a model with Lorenz type vertical differancing, the
extra degree of freedom in the mass field does not seen to be any
problem. The set of eigenvectors obtained from the ciscrete versions
of {3.39)-(3.41) is not orthogonal, but this poses nc difficulty with
respect to the projection process since it is easy to :alculate from
the transpose of the matrix a set of eigenvectors whica are orthogonal
to the original set (e.g. Twomey, 1977, Chapter 4).

For a numerical experiment we again consider an initial value
problem in which a Gaussian perturbation is introduced¢ in the 1 or

surface pressure field. Thus, the initial ©m field is »# the form

_ -(r/r )2
m(r,0)= T - Ae o, (3.42)

where r0==150 km, A=1 mb and 7 is a specified constant. The initial
temperature field is independent of radius along constint o surfaces
and the initial motion field is identically zero.

A control experiment is first conducted for which the lateral
boundary is moved to 3840 km in order to exclude boundary effects on
the numerical solution in the interior 960 km. The vertical motion
field at t=6 hrs is displayed for all the experiments in Fig. 3.10.
Fig. 3.10a, which corresponds to the control or infini:e domain exper-
iment, is the desired result, and indicates that only relatively small
amplitude (high vertical wave number) motions remain in the computa-
tional domain at this time. Boundary conditions II and VI (Figs.
3.10b and 3.10c) appear to give results closest to the control experi-
ments with boundary conditions IV and V (Figs. 3.10e and 3.10d)
deviating significantly from the control. Fig. 3.11 i lustrates the

reflected vertical motion field for boundary conditions VII, V and IV
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Figure 3.12 The reflected vertical motion field at t=6 hrs for
the fully stratified initial value experiments
employing (a) boundary condition II and (b) boundary
condition VI. The contour interval is 0.25 mb/day
with dashed lines indicating sinking motion.
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where the contour intervals are 2.5 mb/day. Since tnec reflections for
boundary conditions II and VI are much smaller, they are given sep-
arately in Fig. 3.12 where the contour interval is recuced by a factor
of ten to 0.25 mb/day. For the cases of zero radial wind (Fig. 3.11b)
and zero divergence (Fig. 3.17c) we see that the external mode and
first internal mode have reached the boundary and have been ref]ected1.
Boundary condition VII gives much better results than either of thesa
since the amplitude of the external mode is significantly reduced, and
very little of the first internal mode is reflected. These results
should be expected since the constant phase speed has been chosen to
be representative of the first internal mode. The theoretical refle:-
tivity for boundary condition VII can be calculated “or each vertical
mode and reveals that the choice of a single phase speed results in
large reflectivities for all vertical modes except for those modes
which propagate at a rate which is close to the chosen ¢. This result
appears to be independent of the choice of c, suggesting a fundamental
weakness in choosing a constant phase speed_to represent all waves.
The reflected vertical motion fields shown in Fig. 3.12 indicate
that boundary condition VI gives stronger reflection than does boundary
condition II. In addition, a considerable amount of computational
noise is introduced into the reflected wave by boundary condition VI.
This is more easily seen in Fig. 3.13 for which the reflected vertical
motion field at t=6 hrs along the 0 =0.778 surface has been plotted
for both boundary conditions II and VI. An interesting and perhaps

serious difference is illustrated in Fig. 3,14, which shows the domain

]In fact, the external mode has been reflected three times, whi' e
the first internal mode has experienced only one reflection.
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averaged surface pressure as a function of time. We see that the use
of boundary condition VI results in a fictitious ‘mass sink' for the

computational domain, a mass trend which could adversely impact Tong

term numerical integrations.

3.6 Summary of the Lateral Boundary Condition Analysis

‘In summary then, we believe that our analysis his demonstrated the
importance of properiy formulating the lateral boundairy condition ‘in
tropical cyclone models, such that it does not refle:t outward propa-
gating gravity-inertia waves. We have shown that it is possible to
derive approximate outgoing wave conditions (boundary conditions I-III)
for the fully stratified axisymmetric case. We have examined theoret-
ically the reflectivities of these three approximate conditions as
well as two other Tlateral boundary conditions in commen use, the con-
ditions of zero divergence and zero radial wind (bcundary conditions
IV and V). The results of this analysis show that boundary condit-ion
I has the lowest reflectivity, although boundary condition II, which
is much easier to implement, is nearly as good for the lower order
vertical modes. It is also clear from our analysis that the condition
of zero divergence is not in the true sense an 'open' Tateral boundary
condition since it results in unit reflection of gravity-inertia waves.
In this regard, it is as poor a boundary condition as the condition
of zero radial wind, which also gives unit reflection.

The behavior of two other lateral boundary conditions has been
examined numerically. These are the method proposed by Orlanski (" 976)
(boundary condition VI) and the method proposed by Kiemp and Wilhe'mson
(1978) (boundary condition VII). The basic problem with the latter

approach in tropical cylcone models is the choice of a single phase
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94

speed to represent all waves. Only those waves moving at or very near
this phase speed will be treated properly, and sin:e there is such a
wide range of propagatign speeds in a stratified model, it is difficult
to 'tune' the choice of this constant phase velocity. However, in the
situation where an external mode does not cccur, o where the amplitude
spectrum of the vertical modes in the model has a narrow distribition,
boundary condition VII may give fairly good results.

Although there is some reflection (5-15%) associated with boundary
conditicn VI, it produces results which appear to closely approximate
those of the control experiment. We believe, however, that there are
several difficulties associated with boundary condition VI. Since
this method is applied level by Tevel it may have cifficulty when two
or more vertical modes (moving at different phase velocities) reach
the boundary simultaneously. This vertically independent specification
of the Tateral boundary condition in a hydrostatic model is questionable
from a theoretical viewpoint since the results of tections 3.2 and 3.4
would suggest that the boundary condition should be applied to each
vertical mode. For the examples we have examined, the numerical
estimates of the phase velocity ¢ tend to vary considerably, which
introduces noise into the computational domain. Ir addition we have
experienced fictitious mass trends when using boundary condition VI.

Consequently, we have chosen to use lateral boundary condition II
in the axisymmetric tropical cyclone model discussed in chapter 2.
Although this boundary condition has been shown to give reasonably
good resuits in the fully stratified case, it is by no means perfect.
It includes both the asymptotic approximation for Hankel functions

and the pure gravity wave appreximation for the gravity-inertia wave
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frequency. Better results could undoubtedly be obtained by using
boundary condition I, but this involves a spectral representation in
the horizontal as well as the vertical. Although present tropical
cyclone models are all based on grid point methods, it would appear
that models with spectral representations in both the horizontal and

vertical would have distinct advantages.



4.0 SPECIFICATION OF INITIAL CONDITIONS

4.1 Initialization Procedure

To begin integration of the model, initial conditions on the
prognostic variables m, u, v, T and q must be specified. We shall
assume that initially there is no transverse circulation, i.e., u = (
everywhere, that the m, v and ¢ fields are in gradient wind balance.
Since the m, v, T and ¢ fields are initially related by hydrostatic
and gradient wind balance, specification of the initital v field allcws
computation of the initial w and T fields. Applying gradient wind

balance at the sea surface we obtain

Vg BanS
f+—r— VS=RTST ato =1, »(4.1)

where %%—disappears since ¢ is zero in the model everywhere along the
g = 1 surface. Knowing Vg and TS everywhere, (4.1) al ows computaticn
of Pg» and hence m, provided an outer boundary condition on Pg has
been specified.

The gradient wind equation at an interior point takes the form

<f+_v_)v=%+6(},‘a—’n; B (4~2)

r ar ar

Differentiating (4.2) with respect to sigma and using “he hydrostatic

equation, we obtain the thermal wind relation in the o-coordinate

oT 90, oc _ 9 v 1 -
Sorac " "o T %0 [(f +r‘)VJ : (4.%)

Since 7 and v are known, (4.3) can be regarded as a first order
partial differential equationino. Knowiedge of o at =he sea surface

and at the outer boundary allows us to solve for o at all interior

points, after which T can be determined from the ideal gas law. The

96
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exact form of the initial tangential wind distributian is discussed in
the next section, as is the initial condition on water vapor.

4.2 1Initial Conditions on Wind, Temperature and Moisture

The initialization procedure described in sectiin 4.1 requires the
specification of an initial tangential wind as well as an initial outer
boundary femperature profile and surface pressure Pg - The initial
tangential wind is specified to be the product of a horizontal struc-

ture term and a vertical structure term

v(r.m.0) = Q[ 2(r/%) M 3(0/G) T , (4.4)

14(r/%)2 || 24(0/8)? |

where V is the maximum amplitude. The horizontal structure is identi-
cal to that used by Ooyama (1969a), and is shown in Fig. 4.1 for

¥ = 240 km. The vertical structure is shown in Fig. 4.2 for G = 0.861.
Using a value of 7 m/s for v gives the inifia] tangeqtial wind fie'd
shown in Fig. 4.3. This initial condition on wind is used for all of
the numerical integrations conducted in this study.

The initial temperature profile at the model boundary (which “s
also used for all of the numerical integrations presanted) corresponds
to the mean tropical clear profile of Gray et al. (1975) (see Fig.
4.4), Using this temperature profile, and a value of 1008.7 mb for Pg
at the model boundary, gives the initial temperature deviation
field shown in Fig. 4.5, and the initial surface pressure distribution
plotted in Fig. 4.6.

Two different initial moisture fields are used in this study, the
first of which specifies the water vapor mixing ratio to be independent
of radius, with the vertical dependence corresponding to the mean

tropical 'cluster environment' profile of Gray et al. (1975). This
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for reference).
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humidities of Gray et al. (1975). The contour
interval is 10%.
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leads tc the initial relative humidity field shown in Fig. 4.7. The
second initial moisture distribution is specified to be both a function
of r and of ¢ such that the initial relative humidity is more realis-
tic. At the outer boundary, the vertical distribution of relative
humidity corresponds to the mean tropical 'clear region' relative
humidity profile given by Gray et al. (1975) while the interior regions
correspond more closely to the mean tropical 'cluster region' relative
humidities (see Fig. 4.8).

4.3 Selection of the Critical Cloud Work Function

The computational procedure for determining the cloud base mass
flux distribution in the Arakawa-Schubert cumulus parameterization
theory which is outlined in section 2.2.3 (the optimal adjustment
method) involves an adjustment process. For computational simplicity,
this adjustment to the time dependent cloud work function is formu-
lated with respect to a 'critical cloud work function' Ac(ﬁ) such
that the cumulus ensemble is always attempting to insure that
A(p,t) < AC(B). This approach may not be so unreasonable since Lord
(1978) has obtained similar (non-zero) values of the cloud work func-
tion (A(DD)) for a variety of synoptic conditions. In any event, we
believe that the results should not be highly sensitive to the critical
cloud work function since, once A(p) exceeds AC(B), the cumulus

A

ensemble in effect responds to §%§?l L.s." Therefore, a careful selec-
tion of Ac(ﬁ) (so as not to substantially exceed the cloud work func-
tion of the initial condition) should minimize the jmpact of using a
critical cloud werk function.

The cloud work function was calculated for the initial distribu-

tion of emperature and moisture at the boundary of the model. The
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Figure 4.9 The critical cloud work function Ac(ﬁ).
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critical cloud work function AC(B) was then determined such that
Ac(ﬁ) > A(p) for all p at the model boundary (see Fig. 4.9). This
choice of Ac(ﬁ) proves to be sufficiently large so that convection
does not spontaneously begin anywhere in the model during the initial

few time steps.



5.0 EXAMPLES OF THE SENSITIVITY OF MODEL STORM DEVELJIPMENT TO THE
INITIAL CONDITION, THE LATENT HEAT RELEASE MECHANISM, AND THE
LATERAL BOUNDARY CONDITION
In the next two chappers we will discuss some of the numerical

results we have obtained using the tropical cyclone midel described

in chapter 2. Eleven different experiments designed to test the

sensitivity of the model are examined. These experimants are listed

in the cross reference Table 5.1. In this chapter, w2 consider the
sensitivity of model storm development to the initial condition on

the moisture field (IC1 and IC2), to the explicit relzase of latent

heat, and to three of the lateral boundary conditioris discussed in

chapter 3 (BCII, BCIV, and BCV). The remaining numerical experiments,
which deal with the sensitivity of tropical cyclone development to

the incorporation of longwave radiation and cumulus momentum transport,

are considered in chapter 6. A1l numerical experiments are conducted

at a latitude of 20°N using a sea surface temperature of 3071°K (27.85°C).

5.1 Sensitivity to the Initial Distribution of Moisture

The effect of the initial distribution of water vapor on the
numerically simulated development of a tropical cyclone was first
addressed by Rosenthal (1970). 1In his tropical cyclone model, as in
ours, the initial condition on wind is one of gradient wind balance,
and nd initial radial circulation. Consequently, an organizational
period is required for such a circulation to develop. Rosenthal's
numerical results indicated that a marked decrease in this organiza-
tional period could be achieved by increasing the initial relative
humidity. We also have examined the sensitivity of our model storm
development td the initial moisture distribution and have obtained

qualitatively similar results which are discussed below.
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PARAMETERIZED

HEAT RELEASE

EXPLICIT
RELEASE  'No Radiation| Radiation {No Radiation| Radiation
OF LATENT
HEAT No Momentum | No Momentum| Momentum Momentum
Transport Transport | Transport Transport
IC1 AA9S AB1 _ —_ _ BCII
AA4 AB4 ADT AE1 AF1 BCII
I1C2 AAS AB5 —_ _ _— BCIV
AA6 AB6 —_— —_ _ BCV

Discussed in

Chapter 5

Discussed in

Chapter 6

Table 5.1

Cross reference table for the numerical experiments presented in chapters 5 and 6.

L0t
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As was shown in chapter 4, two initial conditions on the moisture
field were considered in this study. The first, which we shall refer
to as IC1, specifies the initial water vapor mixing ratio q to be a
function of 7 only, while the second (IC2) specifies the initial water
vapor mixing ratio to be a function of both r and o. Two numerical
integrations were conducted using the Arakawa-Schubert cumulus param-
eterization and the two initial moisture distributions. Experiment
AB1 uses the initial water vapor distribution given by IC1, while
experiment A34 uses the initial water vapor distribution given by
IC2. The development of the model storms are summarized in Fig. 5.1
which shows the time evolution of the maximum Tow level (z ~ 225 m)
tangential wind and central surface pressure. A significant difference
in the development times of the model storms is seen such that the use
of ICT1 results in considerably slower development. In terms of the
time requirecd to achieve hurricane force winds (33 m s']), experiment
AB4 (IC2) takes 76 hours while experiment AB1 (IC1) requires an addi-
tional 80 hours.

The way in which each of the model storms develop is also strik-
ingly different. Figs. 5.2 and 5.3 show the time behavior of the
radius of maximum wind and the interior and exterior extent of the
gale (22 m s']) and hurricane (33 m 5'1) force winds for experiments
AB1 and AB4 respectively. In experiment AB4, a well defined radius
of maximum wind moves slowly inward during the developing stages of
the vortex tc a radius of about 50 km once the storm is fully mature.
On the other hand, experiment ABI1 estab]%shes a very broad tangential

circulation with a large radius of maximum wind shortly into the



RADIUS (km)

110

TIME (days)

| 2
50—
ABl l
400 :
"
| 2
=
300+ o« 2
gz
L S
200 o E%
-
e
=
100 g°
] ] ! 1 1
40 80 120 160 200 240
TIME (hours)
Figure 5.2 The time evolution of the radius of maximum

winds (heavy solid 1ine), and the horizontal
extent of the gale (1light dashed 1ine) and
hurricane (1ight solid line) force winds for
experiment AB1.



RADIUS (km)

111

TIME (days)
| 2 3 ‘lﬁ 5 6 7 8 9 10

500

400

300

200

100

| 1
40 80 120 (60 200 240
TIME (hours)

Figure 5.3 Same as Figure 5.2 but for experiment AB4.



112

numerical integration (36-48 hrs). This broad circulation pattern
then moves very slowly inward over a period of about & days until a
vortex which is similar in.scale and intensity to AB4 s attained.

The unusual nature of the development of AB1 appears to be related
to the horizontal distribution of the parameterizéd convection which
in the. early part of the numerical integration differs quite noticeably
from experiment AB4. The time evolution of the cloud base mass flux
distribution (Figs. 5.4 and 5.5) shows a weak uniform horizontal dis-
tribution of cumulus convection for AB1, while AB4 exh bits stronger
cloud base mass fluxes which are confined to a narrower region inside
250 km. Thus, AB1 does not appear to have a preferred region for deep
cumulus convection as does AB4. We believe that this difference can
easily be explained to be a consequence of the initial water vapor
distribution and the initial condition of gradient wind balance.

The cumulus ensemble predicted by the dynamic conzrol is in
response to a 'large-scale' forcing (which includes surface eddy
fluxes). Because of the initial condition of gradient wind balance,
the large-scale forcing of cumulus convection initially consists of
surface eddy fluxes of heat and moisture coupled with weak low level
convergence. Under such circumstances, deep cumulus convection can
'on1y be expected to take place if the large-scale environment is
relatively moist. We note, however, that for the initial moisture
distribution IC1, the interior regions of the initial disturbance are
less moist in a relative sense than are the outer regions, and are
consequently less favorable to deep convection. This ‘s attributable

to the warm core nature of the initial vortex.
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Fig. 5.6 shows the initial vertical profiles of moist static
energy h and saturated moist static energy h* at 30 km and 900 km for
both IC1 and IC2. It is clear that for IC1 the 900 km profile is more
unstable to moist convection than is the profile at 30 km. Thus, in
the absence of an organized large-scale circulation, it should not be
surpris'ng that the cumulus convection predicted by the Arakawa-Schubert
scheme is so disorganized for experiment ABT.

The use of the more realistic initial moisture distribution IC2
provides a more favorable environment for deep cumulus convection in
the interior regions (see Fig. 5.5). We wish to emphasize, however,
that the increase in the water vapor mixing ratio in this region is
quite modest, with the largest increase less than 0.9 gm/kg (see Fig.
5.7). The most important aspect of IC2 appears to be the very dry
middle and upper level moisture distribution at large radius. This
tends to suppress or delay the onset of deep convection in the outer
regions until a large-scale radial circulation can be established. A
period of slow intensification occurs for about 60 hrs followed by
rapid deepening. The rate at which the model vortex deepens is similar
to results obtained with other axisymmetric models (e.g. Kurihara, 1975)
although the mature steady state storm which is produced by 96 hours is
somewha’. deeper.

For purposes of comparison, we show the tangential wind, tempera-
ture perturbation, relative humidity, vertical motion and cloud base
mass flux fields at 120 hours in Fig. 5.8 and 5.9 for experiments ABI
and AB4 respectively. Fig. 5.8 shows a Very broad and weakly organized

tangential circulation centered at large radius with a maximum in the
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vertical motion field located at approximately 220 km. The cloud base
mass flux distribution continues to show a fairly disorganized pattern
of convection as in the early stages of the numerical integration (Fig.
5.4). In sharp contrast Fig. 5.9 shows a well orgarized upper level
warm core tangential circuiation with maximum winds i~ excess of 70 m/s
at 80 km just above the mixed layer. The vertical motion field peaks
at -250 mb/hr just inside this maximum in the tangertial circulation.
Also note the highly organized bimodal character of t1e cloud base
mass flux distribution inside 300 km. The absence ¢f parameterized
convection inside 60 km is due to the transition from parameterized
heat release to resolvable heat release in the eyewsll region at this
stage of development.

5.2 Numerical Simulations With the Explicit Release >f Latent Heat

The earliest attempts to numerically simulate th2 life cycle of
the tropical cyclone included only the explicit release of latent heat
(e.g. Kasahara, 1961, 1962; Sydno, 1962). These numerical integrations
were carried out to only a few hours during which small-scale (grid-
scale) features in the vertical motion field grew repidly to the point
where they appeared to dominate the Targe-scaie fields. Linear sta-
bility analyses of the growth of small amplitude disturbances in a
conditionally unstable environment had previously predicted the smallest
scale (or cloud scale) motions to have the largest growth rates (Haque,
1952; Sydno, 1953; Lilly, 1960). Consequently, the above numerical
solutions were interpreted as a confirmation of the Tinear studies.
This apparent fajlure to simulate the growth of a cyclone-scale circu-

lation by explicitly resclving the convective release of latent heat
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led to the development of cumulus parameterization techniques, which
although crude, were nevertheless employed with great success. Recently
however, investigations .by Yamasaki (1977) and Roserthal (1978) have
raised questions regarding the need and desirability to parameterize
cumulus convection in tropical cyclone models.

Yamasaki (1977) has used a non-hydrostatic axisymmetric model in
which cumulus convection is explicitly resolved on a telescoping
horizontal grid (400 m interior resolution) to produce a tropical
cyclone like circulation. But also interesting is the study conducted
by Rosenthal (1978) in which he successfully simulates the development
of a tropical cyclone using a hydrostatic axisymmetric model in which
latent heat release occurs totally in 'convective elements' that are
explicitly resolved on a 20 km grid. What makes this work so remark-
able is that it essentially follows the same approach attempted with-
out success by Kasahara (1961, 1962) and Syono (1962), which leads to
the conclusion that these early failures were most likely attributable
to deficient model design.

The model described by Rosenthal (1978) carries 1iquid water as
a dependent variable, and consequently employs a morz sophisticated
resolvable heat release process. Thus, in order to Jdetermine whether
his numerical results might be dependent on this process, we proceeded
to conduct several numerical experiments in which parameterized con-
vection was excluded, leaving the treatment of the r2lease of latent
heat to the Targe-scale condensation process. The rasults of two of
these numerical integrations are shown in Figs. 5.10 and 5.11. Experi-

ment AA9 uses the iritial moisture distribution given by IC1 while
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experiment AA4 uses the initial moisture distributicn given by IC2.
In both cases we see very early, rapid and deep development of a
hurricane-like circulatien. In contrast to the parameterized heat
release counterparts AB1 and AB4, only a weak sensitivity to the
initial moisture distribution can be seen. Hurrican: force winds are
achieved only about 6 hours sooner for experiment AAl, and in both
cases these winds occur within two days of the initial condition.
The gross structure of experiment AA4 is depicted in Fig. 5.711
(experiment AA9 is similar), which shows a very rapidi collapse

of the radius of maximum winds to radii of 7.5-37.5 km followed by
the onset of gale and hurricane force winds.

The horizontal extent of the gale and hurricane force winds is
fairly confined until hour 120 at which point the ga'le force winds
jump out to a radius of 450 km. A similar jump in the exterior hur-
ricane force winds occurs at about 170 hours. The large horizontal
extent of the gale and hurricane force winds may be i consequence of
both the assumption of axisymmetry, and an inadequate frictional
coupling between the mixed layer and the region above. We do not
believe it to be the result of the particular method of heat release.
Since the motions are assumed to be axisymmetric, air particles spiral
directly toward the center of the vortex from larger radius, aliowing
surface friction little time to act as a sink for angular momentum.
If the frictional coupling between the mixed layer and the region
above is too weak,the gale and hurricane force circuiations which are
established tend to be quite broad in horizontal extent. The expan-

sion of the tangential circulation is most pronounced in the case



100
80
60
40r
20}

TANGENTIAL WIND (m/s)

MAXIMUM
VY TV L

CANVAE L Ty

11
1

l
160

1
200

1000

£ 980

260

940

PRESSURE

920

900

880

CENTRAL SURFACE

860

80 20 159
TIME (hours)

40

Figure 5.12 Same as Figure 5.1 but for
AA9 and ABI.

|
2C

10)

240

experiments



MAXIMUM

126

0 TIME (days)

= Il 2 3 4 5 6 7 8 9 0

— I 1 i i ] ) i 1 1

&)

= |00 — AB4 - .

§ _— AA4 f\/,—.// N

80 / N e

_]—' ]\_____,‘—--%
Q= o I
w= 40 A
i

O 20 «
%<ZI | I | i 1
b [ 40 80 120 160 20C 240

1000
a
£ 980

960

940

920

900

880

CENTRAL SURFACE PRESSURE

860

/
// \g 4

1 | | i
40 80 120 160 200 240
TIME (hours)

Figure 5.13 Same as Figure 5.1 but for experiments
AA4 and AB4.



127

of the resolvable heat release experiants due to the nature of the
development of the vortex, which is rapid and initially confined to a
very small region in the intericr. As time goes on, however, the
horizontal scale and intensity of the radial circulation grows, inten-
sifying the tangential circulation which ultimately gives the appear-
ance of a sudden jump in the horizontal extent of the gale and hur-
ricane force winds. Aithough such a sudden jump is not as obvious in
the cases o parameterized heat release ABl and AB4, we note that the
scale of al” these vortices is quite similar once they reach a mature
stage. The incorporation of radiative processes and cumulus momentum
transport (which provides a stronger frictional coupling between the
mixed layer and the region above) can help to reduce the size of the
tangential circulation as we shall see later.

In Figs. 5.12 and 5.13 we compare the resolvable and parameterized
heat release experiments for each of the initial moisture distributions.
Shown is the time evolution of the maximum Tow level tangential wind
and central surface pressure. Although the intensification rates are
s'milar for all model storms, the time required to reach this inten-
sifying stagje and the strength and structure of the mature storm differ
significantiy between the parameterized heat release experiments and
the explicit heat release experiments (see Fig. 5.14).

It would be incorrect to attempt to draw general conclusions
regarding tie issue of the need to parameterize cumulus convection in
a model suc- as ours. There are substantial differences, however,
between the parameterized and explicit heat release experiments we
have conducted. Perhaps the most significant conclusior that can be

drawn from >ur simulations with the explicit release of latent heat
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is that the results first presented by Rosenthatl (1978) do not seem to
be dependent upon the technique employed to represen: the process of
Tatent heat release. By using a fairly crude large-scale condensation
process we have been able to simulate the development of a cyclone-
scale circulation. Although small scale features are produced at the
onset of large-scale condensation (see Fig. 5.15), nonlinear effects
appear to be quite capable of controlling their growth. We note that
the nonlinear horizontal diffusion process is not necessary in order
to effect such control since we have also been able to simulate the
growth of a hurricane circulation using only a linear horizontal

3 2

diffusion coefficient of 10 m“/s.

5.3 Sensitivity of Model Storm Development to the L:teral Boundary

Condition

In this section we will show the sensitivity of model storm devel-
opment to the particular form of the lateral boundary condition. Rosen-
thal (1971) has numerically examined the sensitivity of an axisymmetric
tropical cyclone model to two lateral boundary conditions as functions
of computational domain size. These were the conditions of zero diver-
gence (BCIV) and zero radial wind (BCV). In chapter 3, the problem
of the proper formulation of the lateral boundary cordition is ap-
proached from a linear point of view with the goal of minimizing the
reflection of gravity-inertia waves. A reflectivity analysis shows
that both BCIV and BCV are unit reflectors of gravity-inertia waves,
which Teads to the derivation of an approximate cylindrical pure gravi-
4y wave radiation condition:fer a stratified atmosphere (BCIII).

Each of the above boundary conditions is of course deficient in

some regard, but BCV can be expected to have the Targest impact upon
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the numerical solution since it wmechanically closes the system and
consequertly res=iricts the radial circulation to the size of the com-
putational domain. The conaition of zero divergence (BCIV) represents
an improvement since it allows mass to flow through the lateral bound-
ary of tre computational domain. By comparing the numerical results
obtained using BCIV and BCV for a computational domain comparable in
size to that used in the present study, Rosenthal (1971) found signi-
ficant differences in the development times and final intensities of
the model vortices. The mechanically closed system produced a weaker
vortex trat took longer to develop than the vortex simulated with the
conditior of zero divergence at the lateral boundary.

Altrough BCIV does not suffer from the obvious deficiency asso-
ciated with BCV, it nevertheless is a perfect reflector of any gravity-
inertia wave activity generated in the interior of the computational
domain. In chapter 3, the argument is made that such improper reflec-
tion of cutward propagating gravity-inertia waves can result in a
false moculation of latent heat release through nonlinear interactions
between vertical motion fields associated with the reflected waves,
and the moisture field. For example, if a convergence field (asso-
ciated with a reflected gravity-inertia wave) acts for a long enough
period or a region whose temperature and moisture structure is favor-
able for convection, a net release of latent heat will likely occur in
the colunn. In the real atmosphere, this period of time is probably
on the ordar of one to several hours, but in a numerical model which
incorporates a cumulus parameterization such a pericd may be on the
order of minutes. Thus, in order to avoid this potential problem,

BCII is proposed for use in our tropical cyclone model.
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Numerical solutions are now presented using the three boundary
conditions BCII, BCIV and BCV for experiments incorporating parameter-
ized convection (AB4, AB5, AE6) and those in which convection is ex-
plicitly resolved (AA4, AA5, AA6). Figs. 5.16 and 5.17 show the time
evolution of the maximum Tow level tangential wind and central surface
pressure for the sets of experiments making use of explicit latent heat
release and parameterized heat release, respectively. In each case,
the use of BCV (zero radial wind) results in slower development and a
weaker mature storm as was suggested by Rosenthal (1971). For the
explicit Tatent heat release experiments, note that intensification of
the mode” vortices begins at essentially the same time, regardless of
the boundary condition. Experiment AA6 (BCV) develops more slowly,
however, and even at the deepest stage is considerably weaker than
either AA4 or AA5. The difference in the ultimate intensities is not
as great when the convection is parameterized, but in this case more
than six days is required for AB6 to reach an intensifying stage.

Significant differences in the development of the model storm when
using BCII and BCIV appear only when cumulus convection is parameter-
ized. In those experiments using only explicit heat release, the
development of the model storms is almost identical for the first
three days of the numerical integrations (AA4 vs AA5). Thereafter, the
solutions diverge with AA4 producing a deeper, slowly varying mature
storm. When the cumulus convection is parameterized the use of BCIV
results in a storm which takes a longer period of time to develop,
although the ultimate intensity is similar to the vortex simulated with

BCII (ABL vs AB5).
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Figures 5.18 and 5.19 summarize the behavior of the domain aver-
aged surface pressure in time. For the experiments using BCV (AA6,
AB6), the domain averaged surface pressure is invariant as one would
expect. This quantity does change, however, for boundary conditions
BCII (AA4, AB4) and BCIV (AA5, AB5). 1In both the case of parameter-
ized convection and the case where convection is explicitly resolved,
there is a tendency for the domain averaged surface pressure to be
lower when using BCII. This is generally true at al’l times when con-
sidering the experiments using explicit heat release, and during the
early and late stages of the simulations with parameterized convection.
During the early stages of the numerical integrations, a significant
fraction of the difference in the domain averaged surface pressure is
likely to be directly attributable to gravity-inertia waves which are
transmitted by BCII but are reflected by BCIV.

In conclusion, we note that the general character of the numeri-
cal integrations does appear to depend on the particular form of the
lateral boundary condition. The condition of zero radial wind (BCV)
clearly contributes to significant departures in the numerical solu-
tions obtained when using BCII and BCIV. The acceptability of such a
lateral boundary condition is highly questionable since it artificially
restricts the horizontal extent of the radial circulation, which has an
obvious impact on the numerical solution. The adequacy of the condi-
tion of zero divergence is much more difficult to determine. During
the developing stages of those experiments in which convection is ex-
plicitly resolved on the scale of the grid, 1ittle difference is seen
between the simulations using BCII and BCIV (AA4, AA5). There are,

however, substantial differences in the solutions when cumulus
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convection is parameterized (AB4, AB5). Since the linear analysis
of chapter 3 shows that gravity-inertia waves are reflected from the
boundary of the computational domain when using BCIY, one might specu-
late that in the early stages of the numerical integrations these dif-
ferences are produced by an interaction between reflected gravity-
inertia waves and the cumulus parameterization resu'ting in a net
release of latent heat away from the interior. Such an event would be
unlikely to occur in the case where convection is explicitly resolved
since the atmosphere would have to be very near saturation, which it
generally is not.

One additional distinction in the integrations which use BCII and
BCIV is the steady state nature of the storms simuleted with BCII.
This is probably attributable to some nonlinear aspect of the boundary
condition which is beyond the scope of the analysis presented in

-~

chapter 3.



6.0 EXAMPLES OF THE ROLES OF RADIATION AND CUMULUS MOMENTUM TRANSPORT

In this chapter we consider the effect of a simple radiation
parameterization and the effect of 'cumulus friction' on the develop-
ment of a model storm. These numerical examples make use of the initial
moisture distribution given by IC2 and éhe Tateral boundary condition
proposed in chapter 3 (BCII). Thus they can be compared directly to
experiment AB4 whicn incorporated the parameterized transports of heat
and moisture on"y (see Table 5.1).

6.1 Incorporation of Radiation

The role of radiative processes in large-scale tropical weather
systems is not vet well understood. Albrecht and Cox (1975) have sug-
gested that infrared (or longwave) cooling may be a significant com-
ponent of the total diabatic source occurring in a tropical wave. More
recent diagnostic studies of convection using both spectral and bulk
representations of the cloud field have indicated a marked sensitivity
to the choice 3f a radiative heating (e.g. Yanai et al., 1976;
Stephens and Wilson, 1980). The fact that the longwave radiative
+¢2ling is primarily modulated by upper level cloud has led Gray and
Jacobson (1977) to propose that horizontal gradients in the Tongwave
radiative cooling are fundamental to the maintenance of tropical
disturbances.

The role of longwave radiation in the development of a tropical
cyclone was first addressed by Sundqvist (1970b), who included this
process in a ten level axisymmetric balanced model. A net radiative
cooling profile was applied only to those regions in which condensation
was not taking place. His results showed a noticeable increase in the

rate of intens fication despite the small magnitude of the radiative
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cooling (maximum values of -2°C/day &. 300 mb). Interestingly, the

peak intensity of the storm showed no sensitivity to the incorporation

of radiation.

In order to determine what, if any, effect net radiational cooling
would have on our model storm development, a numerical experiment (AD1)
was conducted which incorporated the simple radiation. parameterization
described in section 2.3.4. We note that the diurnal variation in the
shortwave radiative heating was not included, and only the daily
averaged net radiative heating rate was considered (see Fig. 6.1). A
comparison of the time evolution of the maximum Tow level (z~ 225 m)
tangential wind and central surface pressure for experiments AB4 and
AD1 is shown in Fig. 6.2. This diagram clearly indicates that the
incorporation of radiation results in significantly earlier intensifi-
cation as well as a deeper more intense mature storm. The rate at
which the model storm deepens, however, appears to be insensitive to
the inclusion of the radiation parameterization.

Fig. €.3, which depicts the gross horizontal structure of the
:mulated disturbance suggests a tighter more organized circulation
tnan the ore obtained in experiment AB4 (see Fig. 5.3). Comparisnsn of
the tangential wind field at 120 hours for AB4 (Fig. 5.9) and AD1
{Fig. 6.4) confirms that experiment AD1 exhibits a more intense tangen-
tial circulation confined to a smaller radius. The tzngential circula-
tion in the outer regions appears to be more organized as well with
large values of v restricted to a smaller interior region. Noticeable
differences in the organization of the vertical motion field are also
seen. These results appear to suggest that radiative processes may
play a role in determining the horizontal scale of a fropical distur-

bance.
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The relative humidity field at 120 hrs is much more reasonable in
experiment AD1, showing a pronounced drying in middle levels at the
larger radii (cf. Frank, 1977). This is most likely z consequence of
the strongly bimodal character of the parameterized corvection which
is occurring in the same region. Fig. 6.5 shows the early time evolu-
tion of the cloud base mass flux distribution field for experiment ADT.
The incorporation of a radiative cooling appears to cortribute to
earlier development of strong deep convection in the irterior (cf.

Fig. 5.5). This pronounced difference in the convective activity is
more clearly seen in Figs. 6.6-6.9 which among other things show the

convective-scale flux of total water (LF and the ccnvective scale

g+t

S_L£-+LR) for experiments AB4 and 2D1 at twelve

and twenty-four hours. Note the large horizontal gradients which

heating rate (g g%-F

develop in these convective scale properties by twenty-four hours.
A more rapid development of the transverse circulation accompanies the
accelerated growth of deep cumulus convection as can be seen from the
omega fields presented in Figs. 6.6-6.9. At twzlve hours experiment
AD1 exhibits a vertical motion field (150-200 km) whick is twice as
large as the one produced in AB4. By twenty-four hours this difference
is even more extreme. The intensity of both Tow and middie inflow is
enhanced when radiation is included which accounts for the discrepancy
in the vertical position of the maximum in the omega field.

The numerical results presented here suggest that radiative
cooling does play a significant role in the development of a tropical
disturbance. Even though the magnitude of this cooling is small when

compared to the diabatic heating rates associated with organized
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cumulus convection, the horizontal gradients appear to play a role in
the organization of the radial circulation, contributing to a deter-
mination of both horizontal scale and intensity. We also note a
pronounced response of cumulus convection to the incorporation of a
radiational cooling as has been suggested by the diagnostic studies

of Yanai et al. (1976) and Stephens and Wilson (1980)., This is most
clearly seen in Fig. 6.4 which shows a strongly bimodal distribution
of convection in the outer regions (cf. Fig. 5.9). Consequently, we
are led to conclude that radiative processes should not be neglected in
numerical investigations of the development of tropical disturbances.

6.2 Incorporation of Cumulus Momentum Transport

The modification of the large-scale momentum fields by parameter-
jzed cumulus convection has generally been ignored in numerical model-
ing efforts even though many observational and theoretical studies
have indicated that convective-scale contributions to the Targe-scale
dynamic budgets can be significant (e.g. Gray, 1967; Houze, 1973; Reed
and Johnson, 1974; Stevens et al., 1977; Schneider and Lindzen, 1977;
Stevens and Lindzen, 1978; Shapiro, 1978; Stevens, 1979; Silva Dias,
1979). Since this process appears to be fundamental to large-scale
tropical circulations, we have included a convective-scale momentum
transpor which essentially involves a redistribution of horizontal
momentum by the cumulus ensemble predicted by the Arakawa-Schubert
cumulus parameterization. This down gradient approach is frequently
referred to as 'cumulus friction' (e.g. Stevens et al., 1977).

Recently, Gray (1979) and McBride (1979) have suggested that
cumulus induced momentum accelerations may be important to the genesis

of tropical storms by accelerating the tangential wind in the upper



PRESSURE (mb)

100 T

200}

300} DEVELOPING _—

(STAGE 1)
400}

500

600

700

¥

T

800

900

1000

NON-DEVELOPING
{STAGE 0) *\\J\

- 4 1 4 ] 1

PACIFIC CLOUD
CLUSTERS - B

\
\
/

—

{
/

/
!
|
)
!

1 1 1
-3 -2 -l

0

1 ] ]
b2 3 4 5 -2 -1 0 1 2

TANGENTIAL WINDS AT 4° RADIUS (ZEHR,1976) TANGENTIAL WIND ACCELERATION

(a)

Figure 6.10

(a)

—

BY CUMULUS ENSEMBLE (m/s/hr)
(b)

Vertical profiles of tangential wind at 4 degrees
radius for a developing and nondeveloping Pacific
cloud cluster (Zehr, 1976).

Cumuius induced acceierations of tangential wind
profiles given in Figure 6.10a (see text).

24l



153

and lower troposphere. Although a convective-scale momentum source is
invoked to produce such accelerations, we shall show that a simple re-
distribution of horizontal momentum by the cumulus ensemble can be
expected to produce similar accelerations of the tangential wind. The
vertical profiles of the tangential wind for developing and nondevelop-
ing cloud clusters are quite different with the developing systems
generally exhibiting more vertical shear (Zehr, 1976; McBride, 1979).
Fig. 6.10a gives an example of the vertical profiles of tangential
wind at 4 degrees radius for a developing and nondeveloping Pacific
cloud cluster (Zehr, 1976). In order to determine in an approximate
sense what effect cumulus friction would have on these profiles, sub-
ensemble budgets of v momentum were calculated for each profile using
the mean Marshall Islands thermodynamic structure to estimate the
entrainment rate for each sub-ensemble (Yanai et al., 1973, 1976).
Using the diagnostically obtained cloud base mass flux distribution

of Yanai et al. (1976) an acceleration of the tangential wind profiles
by cumulus convection was obtained. These are illustrated in Fig.
£.10b. Upper and lower tropospheric accelerations are seen in both
cases but with much Targer magnitudes for the developing cluster wind
profile suggesting that cumulus friction may be a process which helps
to differentiate between developing and nondeveloping vortices.

The vertical redistribution of horizontal momentum by cumulus
clouds may b= more important to the dynamics of an evolving tropical
disturbance than one might expect. In section 3.3 it was demonstrated
that heating the atmosphere on horizontal scales typical of a tropical

cloud cluster is an inefficient means of generating balanced
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(geostrophic) flow. On the other hand, it can be shown that forcing
the rotational part of the wind field (tangential component in this
study) on similar horizontal scales can be a very efficient means of
generating balanced flow (cf. Schubert et al., 1980; Silva Dias and
Schubert, 1979).

In the example discussed in chapter 3 we considered an initial

potential vorticity of the form

arv(r,0) f 2 _
ror B gh_ Qn(r’o) - (6.1)

for which the initial relative vorticity was assumed to vanish. A
second interpretation of this initial condition on the potential
vorticity is that there is no initial geopotential perturbation and

the initial tangential wind is given by

2
rv (r,0) = (6.2)
const. r>a

In order tc compute the energetics of such an initial condition it is

necessary to assume that const.=0, i.e. a discontinuous initial tan-

+P,
tential wind. The energy partition KmK is then obtained in a
()
similar fashion to the case discussed in section 3.3, and is given by
K +P
wK 2 = 4K, [ f > a] I, [ f > a} ) (6.3)
0 (gh )? (gh )*

n n

This energy partition is plotted in Fig. 6.11 as a function of dimen-

sional horizontal scale a, at 20°N, for the first five values of
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(gh )® given in the Tast column of Table 3.1. As in Fig. 3.4, for a
K P

€8

given horizontal scale a, the difference between ""K;_—' and unity
represents the fraction of the initial energy partitioned to outward
propagating gravity-inertia waves. In sharp contrast to Fig. 3.4
however, we see that for horizontal scales tyzical of a tropical cloud
cluster (e.g. < 300 km}, the majority of the initial energy is parti-
tioned to balanced flow. Thus, we conclude that the mass field will
tend to adjust to changes in the tangential momentum field produced
by cumulus convection. Even though convective-scale accelerations of
the wind field are likely to be small (see Fig. 6.10b), Fig. 6.11
suggests that they are a highly efficient means of generating balanced
flow. It is worthwhile to note that although modifications of the
divergent part of the wind field (the radial component in our case)
are of Tittle dynamic importance in the Tinear initial value problem
discussed above (since this type of perturbation has zero potential
vorticity and is projected entirely onto gravitational modes), such
modifications can be of importance in a nonlinear way as we shall see.
Shown in Fig. 6.12 is a comparison of the time avolution of the
maximum low level (z n 225 m) tangential wind and central surface
pressure for experiments AB4 and AE1. The incorporation of cumulus
momentum transport in experiment AET appears to have a pronounced
negative impact on the development of the model storm. Similar results
have been obtained by Bliss (1983) who simulated tropical cyclone
genesis using the Ooyama (19692, b) fluid system on a2 equatorial
g-plane. Simulations which included a crude cumulus momentum transport

showed a reduction in genesis and development.
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The time evolution of the gross horizontal structure of the model
storm is shcwn in Fig. 6.13. From Figs. 6.12 and 6.13 it can be seen
that the mocel vortex goes through a period of four days with little
intensification during which the tangential circulation in the exterior
region spins up to give a broad horizontal circulation without a well
defined radius of maximum winds. This period is followed by rapid
intensification which is similar to that obtained in AB4. The horizon-
tal scale and intensity of the mature storm (before 20C hrs) is quite
similar in scale and intensity to AB4 as well (see Fig. 6.13).

The delay in the development of model storm AE1 does not appear
to be related to the horizontal distribution of the parameterized con-
vection. The development of the cloud base mass flux distribution
field (see Fig. 6.15) in experiment AE1 is similar to AB4 (see Fig.
5.5) although the magnitude is somewhat smaller. This difference in
the magnitude of the convective activity is most clearly seen by com-
paring Figs. 6.16 and 6.17 with Figs. 6.6-6.9. Both the convective-
scale transports of total water and the convective-scale heating
rates for AE1 are smaller than those in AB4 and considerably smaller
than those produced in AD1. Also note the weak, poorly organized
character of the vertical motion field in the early stages. This in-
dicates a very slow development of the large-scale transverse circula-
tion which we believe can be explained to be a consequence of the
vertical redistribution of horizontal momentum.

Plotted in Fig. 6.18 are vertical profiles of the convective-
scale heating rate, and the convective-scale acceleration of the tan-
gential and radial wind at r=240.0 km and t=30 hours (Note that

these are fairly typical of the region 100-300 km). The accelerations
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of the tangential wind component produced by the model are very similar
in both vertical structure and magnitude to the diagnostically deter-
mined accelerations of Fig. 6.10b. What is of most significance, how-
ever, is the acceleration of the radial component of the wind, which
shows a strong positive acceleration in the mixed layer and a strong
negative acceleration in the upper Tevels. Thus, the rearrangement of
the radial component of momentum by cumulus clouds tends to retard the
development of a transverse circulation by slowing both Tow level in-
flow and upper level outflow. In this case (AE1) a significant reduc-
tion in the horizontal convergence of water vapor accompanies the slow-
down in the Tow level circulation which has the effect of suppressing
the cumulus activity in the interior during the early stages of
development.

One additional numerical experiment was conducted to address the
role of cumulus friction in which the convective-scale rearrangement
of radial momentum was neglected (no figures are shown). In this case,
there is a slight acceleration of model storm development (2-4 Faurs)
with respect to experiment AB4. The mature storm which is produced
is also deeper. This result appears to confirm that it is the vertical
redistribution of the radial component of momentum which retards the
development of the model storm in experiment AET.

It is clear from these results that the incorporation of convec-
tive-scale transports of horizontal momentum can contribute to signifi-
cant alterations of the numerical solution. However, we are not yet
prepared to conclude that these convective-scale effects will always
act one way, i.e. to either accelerate or retard tropical cyclone

development. Since the convective-scale accelerations of the
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large-scale wind are so closely dependent upon the vertical structure
of the large-scale wind, and to the intensity of cumilus activity, ad-
ditional sensitivity studies to the initial condition should be con-
ducted. The sensitivity of the above results to the particular form

of the cloud model should also be addressed (such as the incorporation
of moist downdrafts). Finally, it is entirely possible that convective-
scale redistribution of horizontal momentum may play an important role
in the asymmetric structure of a tropical storm. This question goes
beyond the present scope of this study, but should be addressed in
future asymmetric modeling efforts.

6.3 Incorporation of Both Radiation and Cumulus Momer tum Transport

As a final experiment (AF1) we examine the sensitivity of model
storm development to the incorporation of both the raciation parameter-
ization used in experiment AD1 and the convective-scale transport of
horizontal momentum which was considered in experiment AE1. The results
of this numerical experiment are summarized in Figs. £.19-6.24,

In experiment AD1 we saw that the incorporation ¢f radiation ac-
celerated storm development while experiment AE1 indicated that cumulus
transport of momentum retarded development. Thus, it should not be too
surprising to see that the development of the model storm including
both processes is similar to the development of the mcdel storm which
includes neither process. The time evolution of the maximum Tow Tevel
(z~ 225 m) tangential wind and central surface pressure for experiments
AF1 and AB4 are compared in Fig. 6.19. The time required to reach the
intensification stage is almost identical for each of these simula-
tions, and the final steady state mature storm is also very similar in

intensity as determined by central surface pressure. The structure of
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the mature storm is quite different, however, as can be seen in Figs.
6.20 and 6.21. The tangential circulation appears to be much more ac-
ceptable with regard to the overall organization producing gale and
hurricane force winds which are restricted to more reasonable radii.
The vertical motion field which is obtained in experiment AF1 appears
to be better organized especially in the eyewall region (cf. Figs. 5.9
and 6.4). The relative humidity distribution is also much more
reasonable than the ohe produced in experiment AB4.

The early time evolution of the cloud base mass flux distribution
is most like experimznt AD1, although not as large in magnitude (see
Figs. 6.21 and 6.5). We note that the convective-scale flux of total
water most resembles experiment AB4 while the convective-scale heating
rate is most like experiment AD1 (Figs. 6.23 and 6.24). The develop-
ment of the vertical motion field and tangential circulation is
obviously more rapid than in experiment AB4 but still somewhat slower
than ADIT.

These results show that the incorporation of both radiation and
cumuius momentum transport leads to reasonable development of a tropi-
cal disturbance. The very early development of the transverse circula-
tion is apparently accelerated although the time required to reach a
mature stage is somewhat Tonger. The most significant aspect of the
incorporation of both these processes is the marked improvement in

the structure of the mature storm.



172

BXPERIMENT APL Y VBLOCITY (M/8) t = 12.00 HOURS
&
3' ,OOE
W
w
w e
x e
a -
ws L S —
2= \\
-
w
Q
w IOOO
3 i L 3
0 300 400 500
RADIU.: {km}
EXPERIMENT AFl RELATIVE RUMIDITY t = 12.00 HOURS

T

o
<3
k=3

BASIC STATE PRESSURE
{mb)

1000 1 -
L ] -
) 100 200 300 400 500
RADIUS (km)
EXPERIMENT APL OMEGA (MB/HOUR) t = 12.00 HOURS
&
3 100,
7]
w)
w
@
Q"E 500
5 '
a .
2]
14
0 10001
< 1 1
@ |oo zoo 300 400 500
RADIUS (km)

BXPERIMENT API  CONVECTIVB PLUX L(Q+L) (W/M*°2) t = 12.00 HOURS

-y

1000!

BASIC STATE PRESSURE
{mb)
: g
r L

1 L 1 1 -J
a 100 200 300 400 500
RADIUS {km)
EXPERIMENT APt SPCTRL HEATING RATR (C/BR) t = 12.00 BOURE
&
T w00
“n
0
w (
&
~ §Q0 -—
we ] yd
=& - 6
= ~———]
0
o .
o 1000
< t 1 i t ]
@ o 100 200 300 400 500
RADIUS (km)

Figure €.23 Same as Figure 6.6 but for experiment AF1.



173

EXPERIMENT AFL V VBLOCITY (M/8) t =~ 24.00 HOURS
&
& 100
17
v
)
&
w3 500
~ E
s
1%)
o
% 1000 =
<< L 1 1 ! ] J
a .0 100 200 300 400 500
RADIUS (km)
EXPERIMENT APL RBLATIVE HUMIDITY t = 24.00 HOURS
g
14
5
(723
172
Ll
@
a
18]
=
=
[%2]
o
1000/
f:’(, L | | 1 1 |
a [ 100 200 300 400 500
RADIUS {km)
BXPERIMENT AP1 OMEOA (MB/HOUR) t = 24.00 BOURS
&
T 100
w
1]
Ll
&
uz 500
3 Q
=
v
%)
@ 1000
<t | ] 1 1 1 J
@ 0 100 200 300 400 500

RADHS (km)

EXPERIMENT APl  CONVECTIVE FLUX K(Q+L) (W/M>*2) t = 24.00 HOURS

U e

BASIC STATE PRESSURE
{mb}
. 2
O
T L\L

1000
1 1 | 1 J
100 200 300 400 500
RADIUS (km)
EXPERIMENT AP1 SPCTRL HEATING RATE (C/HR) L = 24.00 HOURS
&
T 100
13
wy
) Lo
- &
pit
%]
o
@ 1000
Pt L 1 1 L "
© 0 100 200 300 400 500

RADIUS (km)

Figure 6.24 Same as Figure 6.6 but for experiment AF]
at 24 hours.



7.0 SUMMARY AND CONCLUSIONS

We have developed an eighteen level,axisymmetric primitive equa-
tion tropical cyclone model which uses the Arakawa-Sciubert spectral
cumulus parameterization and have successfully simula:ed the develop-
ment of a weak tropical disturbance into a mature hurricane. The
quasi-equilibrium hypothesis, which involves the solu:ion of an inte-
gral equation for the cloud base mass flux distribution function, has
been formulated as an optimization problem (the optimal adjustment
method). The cloud base mass fluxes which are produced using this
formulation are quite reasonable bearing great resemblance to the
mass flux distributions obtained in diagnostic budget studies (e.g.
Yanai et al., 1976).

Rosenthal (1978) has shown that the development ¢f a reasonable
hurricane circulation can be achieved without the use ¢f a cumulus pa-
rameterization in models with horizontal grid resolutions of a few tens
of kilometers. Despite the crude nature of the large-scale condensation
process employed in our model, we too have been able to simulate the
development of a hurricane with only the explicit relcase of latent
heat. These results appear to verify the conclusion that the early
attempts to simulate tropical cyclones along these lires were flawed
(e.g. Kasahara, 1961, 1962; Syono, 1962). The initial growth of small-
scale features is apparently controlled by nonlinear effects which were
probably not well represented in these early models. Although we have
been successful in simulating hurricane development with explicit latent
heat release, the differences in the development, intensity and struc-

ture of the model storms simulated with parameterized convection are

significant. It'ié difficult to draw a general conclusion regarding the
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desirability of explicitly resolving cumulus convection, but in our
opinion such an approach would probably most appropriately be employed
in a non-hydrostatic model with a much finer grid resolution (on the
order of several hundred meters).

The Tinear analysis of chapter 3 demonstrates that most of the
available potential energy generated by latent heat release, on hori-
zontal scales typical of a tropical cloud cluster, is partitioned to
gravity inertia wave motion rather than to the balanced flow. In this
way most of the generated energy is radiated away to the far field
emphasizing the need for the lateral boundary condition in a primitive
equation model to be able to transmit gravity-inertia waves. Since
most boundary conditions are deficient in this regard, an approximate
cylindrical pure gravity wave radiation condition has been derived for
use in axisymmetric primitive equation models. Simple diagnostic
numerica’ integrations show that for the first few vertical modes,
gravity “nertia waves are, for all practical purposes, transmitted by
this boundary condition. Several numerical experiments with the
tropical cyclone model have also been conducted to illustrate the
sensitiv-ty of the solution to the exact form of the lateral bcundary
condition. Noticeably earlier development of the model storm occurs
with the radiation condition when cumulus convection is parameterized
as compared to the two most common boundary conditions in present use,
the conditions of zero divergence and zero radial wind.

The Arakawa-Schubert cumulus parameterization demonstrates a
strong sensitivity to the initial moisture distribution in the absence
of an initial transverse circulation. In an experiment with a moisture

distribuiion which is independent of radius, development of the model
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vortex is extremely slow and highly unusual. The incorporation of a
horizontal gradient in the initial moisture distribut on results in
more rapid and more reasonable growth of the initial c¢irculation.

The sensitivity of model storm development to the processes of
radiation and cumulus momentum transport has been exanined. A simple
net radiational cooling parameterization was included in the model
which produced earlier intensification and a deeper mature storm. Ad-
ditionally, a marked decrease in the horizontal scale of the simulated
hurricane was observed suggesting that radiative processes may play an
important role in determining the scale of tropical d-sturbances.

The incorporation of cumulus transports of horizontal momentum had
a strong negative effect on the development of our mocel vortex.
Strong accelerations of the upper and Tower level radial wind field
tended to slow the development of the transverse circilation which in
turn slowed the development of the model storm. The zccelerations of
the low level inflow appear to reduce the low level ccnvergence of
water vapor which has a significant impact on the development of
cumulus convection in the interior. Although the resiits of this
experiment indicate that cumulus momentum transport dces not enhance
tropical cylcone development, further study is required. The sensi-
tivity of this process to the initial condition as well as the sensi-
tivity to the particular form of the cioud model emplcyed in the
cumuius parameterization should be explored.

The most interesting numerical experiment conducted is the final
one which includes both radiation and the convective-scale transport
of horizontal momentum. In a gross sense, the development of this

model storm is remarkably similar to the development ¢f a model storm
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which incorporates neither the process of radiation nor cumulus momen-
tum transport. One very important distinction, however, is the much
more reasonable structure of the mature storm indicating that these
processes may be fairly important to the organization and scale of
tropical cyclones.

There are, of course, several shortcomings of the present model
which became evident during the experimental part of this study. 1In
all cases extremely deep storms are produced by the model, much deeper
thar are generally observed in nature. Previous experience has in-
dicated that the final intensity of the model storm is somewhat sen-
sitive to frictional effects (in particular the choice of a vertical
mixing Tength for the nonlinear vertical diffusion process). We have
treated the surface energy exchanges perhaps too simply, choosing a

constant value of the drag coefficient c_, which is likely too low for

D
the mature stage of the simulated storm. A more sophisticated treat-
ment of the eddy surface fluxes of heat, moisture and momentum should
be included in future versions of the model. This is likely to *mprove
the results so that the intensity and structure of the mature model
storm will tear more resemblance to those observed in nature (cf.
Frank, 1977).

The treatment of the mixed layer is also a fairly weak aspect of
the present model. Since a mixed layer of variable depth is not in-
cluded, we find it necessary to allow cumulus convection to interact
directly with the heat, moisture and momentum budgets of our constant

depth 'mixed layer'. This formulation, coupled with the simple cloud

model used in the cumulus parameterization, results in direct heating
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of the mixed layer by parameterized cumulus convection. The magnitude
of this heating can probably be reduced by a more careful selection

of the jump in dry static energy across the top of the mixed layer,

but this will not completely eliminate the questionablz heating in the
mixed Tayer. We feel there are two ways to improve this aspect of the
tropical cylone model, the first of which involves a gesneralization

of the cloud model in the cumulus parameterization so 3s to include
moist downdrafts (e.g. Johnson, 1976). Such a modificition might help
to correct the Tow level heating produced by the conve:tion as well as -
give different and perhaps improved results with regard to cumulus
transports of horizontal momentum. Secondly, a mixed layer of variable
depth should eventually be incorporated into the model. 1In the present
sigma coordinate model, the introduction of such a mixed Tayer has cer-
tain computational disadvantages since the top of the mixed layer is
not necessarily a coordinate surface. However, it is sossible to
design a generalized sigma coordinate system ir which both the ground
and the top of the mixed layer are coordinate surfaces,

Finally, a 1iquid water budget equation and a raii water budget
equation should probably be included in the system of joverning equa-
tions (cf. Rosenthal, 1978). Since the present model dJoes not allow
storage of 1iquid water, the large-scale condensation srocess is
required to remove excess condensate immediately. This approach,
although probably adequate for a general circulation madel, is not
realistic for the type of phenomena we are attempting to simulate.

We believe that the incorporation of liquid water will help to improve
the structure of the inner core of the simulated disturbance (see

Shea and Gray, 1973; Gray and Shea, 1973).



REFERENCES

Anthes, R.A., 1971: A numerical model of the slowly varying tropical
cyclone in isentropic coordinates. Mon. Wea. Rev., 99, 617-635.

» 1972: Development of asymmetries in a three-dimensional
numerical model of the tropical cyclone. Mon. Wea. Rev., 100,
461-476.

» 1977: Hurricane model experiments with a new cumulus parameter-
ization scheme. Mon. Wea. Rev., 105, 287-300.

» S.L. Rosenthal and J.W. Trout, 1977a: Preliminary results from
an asymmetric model of the tropical cyclone. Mon. Wea. Rev., 99,
744-758 .

» J.W. Trout and S.L. Rosenthal, 1971b: Comparisons of tropical
cyclone simulations with and without the assumption of circular
symmetry. Mon. Wea. Rev., 99, 759-766.

Albrecht, B. and S.K. Cox, 1975: The large-scale response of the
tropical atmosphere to cloud-modulated infrared heating.
J. Atmos. Sci., 32, 16-24.

Arakawa, A., 1969: Parameterization of cumulus convection. Proc.
WMO/IUGG Symp. N.W.P. in Tokyo, November 26-December 4, Tokyo,
Japan Meteorological Agency, IV, 1-6.

» 1972: Design of the UCLA general circulation model. Numerical
simulation of weather and climate, Technical Report 7, Dept. of
Meteorology of California, Los Angeles.

» Y. Mintz, and collaborators, 1974: The UCLA atmospheric
general circulation model. Dept. of Meteorology, UCLA, Los
Angeles, California.

» and W.H. Schubert, 1974: Interaction of a cumulus cloud en-
semble with the large-scale environment, Part I. J. Atmos. Sci.,
31, 674-701.

, and V.R. Lamb, 1977: Computational design of the basic
dynamical processes of the UCLA general circulation model.
Methods in Computational Physics, 17, 173-265.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea.
Rev., 100, 487-490.

Augstein, E., H. Riehl, F. Ostapoff and V. Wagner, 1973: Mass and
energy transports in an undisturbed Atlantic trade wind flow.
Mon. Wza. Rev., 101, 101-111.

179



180

Bennett, J.R., 1976: Open boundary conditions for dispersive waves.
J. Atmos. Sci., 33, 176-182.

Betts, A., 1975: Parametric interpretation of trade-wind cumulus
budget studies. J. Atmos. Sci., 32, 1934-1945.

Bliss, V.L., 1980: Numerical simulation of tropical cyclone genesis.
Ph.D. dissertation, Dept. of Atmos. Sci., University of Washington,
268 pages.

Businger, J. and W. Sequin, 1977: Sea-air surface fluxes of sensible
and latent heat and momentum. Report of the U.S. GATE Central
Program Workshop held at National Center for Atmospheric Research,
Boulder, Colorado, 25 July-12 August 1977, 441-4523,

Charney, J.G., and A. Eliassen, 1964: On the growth of the hurricane
depression. J. Atmos. Sci., 21, 68-74.

Clark, T.L., 1979: Numerical simulations with a three-dimensional
cloud model: lateral boundary condition experimen:is and muliti-
cellular severe storm simulations. J. Atmos. Sci., 36, 2191-2215.

Cox, S.K. and K.T. Griffith, 1979: Estimates cf radiazive divergence
during Phase III of the GARP Atlantic Tropical Experiment: Part
IT: Analysis of Phase III results. J. Atmos. Sci., 36, 586-601.

Daley, R., 1979: The application of non-linear normal mode initializa-
tion to an operational forecast model. Atmosphere-Ocean, 17,
97-124.

Dantzig, G.BE., 1963: Linear programming and extensions. Princeton
University Press, Princeton, 631 pages.

Elvius, T., 1977: Experiments with a primitive equation model for
limited area forecasts. Beitrdge zur Phys. der Atmosphire, 50,
367-392.

Erdelyi, A., W. Magnus, F. Oberhettinger, and F.G. Tricomi, 1954:
Tables of Integral Transforms, 2 volumes, McGraw-Hill, New York.

Fingerhut, W.A., 1978: A numerical model of a diurnally varying
tropical cloud cluster disturbance. Mon. Wea. Rev , 106, 255-264,

Frank, W.M., 1977: The structure and energetics of the tropical
cyclone, I: Storm structure. Mon. Wea. Rev., 105, 1119-1135,

Gray, W.M., 1967: The mutual variation of wind shear, and baro-
clinicity in the cumulus convective atmosphere of the hurricane.
Mon. Wea. Rev., 95, 55-74,

, 1973: Cumulus convection and larger scale circulations, I:
Broadscale and mesoscale considerations. Mon. We:. Rev., 101,
839-355.




181

» and D.J. Shea, 1973: The hurricanes inner core region, II:
Thermal stability and dynamic characteristics. J. Atmos. Sci.,
30, 1565-1576.

s E. Ruprecht and R. Phelps, 1975: Relative humidity in tropical
weather systems. Mon. Wea. Rev., 103, 685-690.

, and R. Jacobson, Jr., 1977: Diurnal variation of deep cumulus
convection. Mon. Wea. Rev., 105, 1171-1188.

» 1979: Hurricanes: their formation, structure and Tikely
role in the tropical circulation. Quart. J. Roy. Meteor. Soc.,
Supplement to Meteorology Over the Tropical Oceans, 105, 155-218,

Hack, J.J., and W.H. Schubert, 1976: Design of an axisymmetric primi-
tive equation tropical cyclone model. Colorado State University
Atmospheric Science Paper No. 263.

Haque, S.M.A., 1952: The initiation of cyclonic circulation in a
vertically unstable stagnant air mass. Quart. J. Roy. Meteor.
Soc., 78, 394-406.

Harrison, E.J., 1973: Three-dimensional numerical simulations of
tropical systems utilizing nested finite grids. J. Atmos. Sci.,
30, 1528-1543,

Holland, J.Z. and E.M. Rasmusson, 1973: Measurements of the atmospheric
mass, energy and momentum budgets over a 500-kilometer square of
tropical ocean. Mon. Wea. Rev., 101, 44-55,

Houze, R.A., Jr., 1973: A climatological study of vertical transports
by cumulus-scale convection. J. Atmos. Sci., 30, 1112-1123.

Johnson, R.H., 1976: The role of convective-scale precipitation down-
drafts in cumulus and synoptic-scale interactions. J. Atmos. Sci.,
33, 1890-1910.

, 1977: The effects of cloud detrainment on the diagnosed
properties of cumulus populations. J. Atmos. Sci., 34, 359-366.

Jones, R.W., 1977: A nested grid for a three-dimensional model of a
tropical cyclone. J. Atmos. Sci., 34, 1528-1553.

Kasahara, A., 1961: A numerical experiment on the development of a
tropical cyclone. J. Meteor., 18, 259-282.

, 1962: The development of forced convection caused by the
release of latent heat of condensation in a hydrostatic atmosphere.
Proc. Int. Symp. Numerical Weather Prediction, Tokyo, Sigekata
Sydno, Ed., Meteor. Seoc. Japan, 387-404.




182

, and K. Puri, 1980: Spectral representation of three-dimensional
global data by expansion in normal mode functiuns. Submitted to
Mon. Wea. Rev,

Klemp, J.B., and R.B. Wilhelmson, 1978: The simulation of three-dimen-
sioral convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.

Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic con-
ditions. Bound.-layer Meteor., 9, 91-112.

Kuo, H.L., 1965: On formation and intensification of tropical cyclones
through latent heat release by cumulus convect-on. J. Atmos. Sci.,
22, 40-63.

Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated
in an axisymmetric numerical model. J. Atmos. Sci., 32, 25-59.

, and R.E. Tuleya, 1974: Structure of a tropical cyclone
developed in a three-dimensional numerical simulation model. J.
Atmos. Sci., 31, 893-919,

» G.J. Tripoii, and M.A. Bender, 1979: Desigrn of a moveable
nested-mesh primitive equation model. Mon. We:c. Rev., 107,
239-249.

Lilly, D.K., 1960: On the theory of disturbances ir a conditionally
unstable atmosphere. Mon. Wea. Rev., 88, 1-17.

, 1980: Proper lateral boundary conditions for convective cloud
and storm simulations. To be published.

Lopez, R.E., 1973: A parametric model of cumulus convection. J.
Atmos. Sci., 30, 1354-1373.

Lord, S.J., 1978: Development and observational verification of a
cumulus cloud parameterization. Ph.D. dissertuation, Dept. of
Atmos. Sci., UCLA, 359 pages.

Lorenz, E.N., 1960: Energy and numerical weather prediction. Tellus,
12, 364-373.

Luenberger, D.G., 1973: Introduction to linear and nonlinear program-
ming. Addison Wesley Publishers, 364 pp.

Madala, R.V., and S.A. Piacsek, 1975: Numerical simulation of asym-
metric hurricanes on a R-plane with vertical shear. Tellus, 27,
453-468.

Mathur, M.B., 1974: A multi-grid primitive equatior model to simulate
the development of an asymmetric hurricane (Isebell, 1964). J.
Atmos. Sci., 31. 371-393.



183

McBride, J.L., 1979: Observational analysis of tropical cyclone for-
mat-on. Dept. of Atmos. Sci. Paper No. 308, Colorado State Univ.,
Fori. Collins, CO, 230 pp.

Nitta, T., 1975: Observational determination of cloud mass flux
distribution. J. Atmos. Sci., 32, 73-91.

, 1977: Response of cumulus updraft and downdraft to GATE
A/B-scale motion systems. J. Atmos. Sci., 34, 1163-1186.

, 1978: A diagnostic study of the interaction of cumulus updrafts
and downdrafts with large-scale motions in GATE. J. Met. Soc.
Japan, 56, 232-242.

Obukhov, A.M., 1949: On the question of the geostrophic wind (in
Russian), Izv. Akad. Nauk SSSR Ser. Geograf.-Geofiz., 13(4),
281-306. (Engl. transl. available from W. Schubert, Dept. of
Atmospheric Science, Colorado State University.)

Ogura, Y., 1964: Frictionally controlled, thermally driven circulation
in a circular vortex with application to tropical cyclones. J.
Atmos. Sci., 21, 610-621.

, and H.R. Cho, 1973: Diagnostic determination of cumulus cloud
population from observed large-scale variables. J. Atmos. Sci.,
30, 1276-1286.

Ooyama, ., 1964: A dynamical model for the study of tropical cyclone
devialopment. Geofis. Int., 4, 187-198.

, 1969a: Numerical simulation of the 1ife cycle of tropical
cyciones. J. Atmos. Sci., 26, 3-40.

, 1969b: Numerical simulation of tropical cyclones with an
axisymmetric model. Proceedings of the WMO/IUGG Symposium on
Numerical Weather Prediction, Tokyo, 1968. III:81-88.

, 1971: A theory on parameterization of cumulus convection.
J. Meteor. Soc. Japan, 46, 178-201.

, 1973: A preliminary test of the CONTRIBE parameterization of
cumilus convection. Paper presented at Study Conference on the
Mod=1ing Aspects of GATE, Joint Organizing Committee for GARP,
Talahasse, Florida.

Orlanski, I., 1976: A simple boundary condition for unbounded hyper-
bolic flows. J. Computational Physics, 21, 251-269.

Phillips, N.A., 1957: A coordinate system having some special advan-
tages for numerical forecasting. J. Meteor., 14, 184-185.



184

Reed, R.J., and R.H. Johnson, 1974: The vorticity budget of synoptic-
scale wave disturbances in the tropical western Pacific. J. Atmos.
Sci., 31, 1784-1790.

Riehl, H. and J.S. Malkus, 1961: Some Aspects of Hurricane Daisy,
1958. Tellus, 13, 181-213.

Robert, A.J., J. Henderson, and C. Turnbill, 1972: An implicit time
integration scheme for baroclinic models of the atmosphere. Mon.
Wea. Rev., 100, 329-335.

Rosenthal, S.L., 1970: A circularly symmetric primitive equation model
of tropical cyclone development containing an expicit water vapor
cycle. Mon. Wea. Rev., 98, 643-663.

» 1971: The response of a tropical cyclone mode! to variations
in boundary parameters, initial conditions, laterzl boundary
conditions, and domain size. Mon. Wea. Rev., 99, 767-777.

» 1973: Hurricane modeling experiments with a new parameteriza-
tion for cumulus convection. NOAA Technical Memorandum, ERL
WMPO-4, U.S. Department of Commerce, National Hurricane Research
Laboratory, Miami, Florida.

» 1978: Numerical simulation of tropical cyclone development
with latent heat release by the resolvable scales. I: model
description and preliminary results. J. Atmos. Sci., 35, 258-271.

Schneider, E.K. and R.S. Lindzen, 1976: A discussion ¢f the parameter-
ization of momentum exchange by cumulus convectior. J. Geophys.
Res., 31, 3158-3160.

, and s, 1977: Axially symmetric steady stzte models of the
basic state for instability and climate studies, }: Linearized
calculations. J. Atmos. Sci., 34, 263-279.

Schubert, W.H., 1974: Cumulus parameterization theory in terms of
feedback and control. Colorado State University, Atmospheric
Science Paper No. 226, Fort Collins, Colorado.

» J.J. Hack, P.L. Silva Dias and S.R. Fulton, 1980: Geostrophic
adjustment in an axisymmetric vortex. J. Atmos. ici., 37, 1464-
1484,

Shapiro, L.J., 1978: The vorticity budget of a composite African
tropical wave disturbance. Mon. Wea. Rev., 106, £06-817,

Shea, D.J. and W.M. Gray, 1973: The hurricanes inner core region,
I: Symmetric and asymmetric structure. J. Atmos. Sci., 30,
1544-1564.




185

Silva Dias, M.F., 1979: Linear spectral model of tropical mesoscale
systems. Dept. of Atmos. Sci. Paper No. 311, Colorado State
University, Fort Collins, Colorado, 213 pp.

Silva Dias, P.L., and W.H. Schubert, 1977: Experiments with a spectral
cumulus parameterization theory. Atmospheric Science Paper No.
275, Dept. of Atmospheric Science, Colorado State University, Fort
Collins, Colorado. 132 pages.

, and W_H. Schubert, 1979: The dynamics of equatorial mass-flow
adjustment. Atmospheric Science Paper No. 312, Department of
Atmospheric Science, Colorado State University, Fort Collins,
Colorado, 203 pages.

Smagorinsky, J., 1963: General circulation experiments with the

primitive equations: I. The basic experiment. Mon. Wea. Rev.,
91, 99-164.

Stephens, G.L. and K.J. Wilson, 1980: The response of a deep cumulus

convection model to changes in radiative heating. J. Atmos. Sci.,
37, 421-434,

Stevens, D.E., R.S. Lindzen, and L.J. Shapiro, 1977: A new model of
tropical waves incorporating momentum mixing by cumulus convection.
Dyn. Atmos. Oceans, 1, 365-425.

, and , 1978: Tropical wave-CISK with a moisture budget
and cumulus friction. J. Atmos. Sci., 35, 940-961.

,» 1979: Vorticity, momentum and divergence budgets of synoptic-
scale wave disturbances in the tropical eastern Atlantic. Mon.
Wea. Rev., 107, 535-550.

Sundqvist, H., 1970a: Numerical simulation of the development of

tropical cyclones with a ten-level model, part I. Tellus, 22,
359-290.

» 1270b: Numerical simulation of the development of tropical
cyclones with a ten-Tevel model, part II. Tellus, 22, 504-510.

Syono, S., 1953: On the formation of tropical cyclones, Tellus, 5,
179-195,

» 1962: A numerical experiment of the formation of tropical
cyclones. Proc. Int. Symp. Numerical Weather Prediction,
Tokyo, Sigekata Syono, Ed., Meteor. Soc. Japan, 405-418.

Temperton, C., and D.L. Williamson, 1979: Normal mode initialization
for a multi-level gridpoint model. Tech. Rept. No. 11, European

Centre for Medium Range Weather Forecasts, Shinfield Park,
Reading, England.



186

Twomey, S., 1977: Introduction to the mathematics of inversion in
remote sensing and indirect measurements. Elsevier Scientific
Publishing Co., Amsterdam.

Wada, M., 1979: Numerical experiments of the tropical cyclone by use
of the Arakawa-Schubert parameterization. J. Meteor. Soc. Japan,
57, 505-530.

Yamasaki, M., 1968a: Numerical simulation of tropical cyclone develop-
ment with the use of primitive equations. J. Meteor. Soc. Japan,
46, 178-201.

, 1968b: Detailed analysis of a tropical cyclone simulated with
a 13-layer model. Papers in Meteorology and Geophysics, 19, 559-
585.

, 1977: A preliminary experiment of the tropical cyclone with-
out parameterizing the effects of cumulus convection. J. Meteor.

Soc. Japan, 55, 11-30.

Yanai, M., 1967a: A detailed analysis of typhoon formation. J.
Meteor. Soc. Japan, 39, 187-213.

, 1961b: Dynamical aspects of typhoon formation. J. Meteor.
Soc. Japan, 39, 283-309,

, S. Esbensen, and J.-H. Chu, 1973: Determination of bulk
properties of tropical cloud clusters from large-scale heat and
moisture budgets. J. Atmos. Sci., 30, 611-627.

, J.-H. Chu, T.E. Stark and T. Nitta, 1976: Response of deep
and shallow tropical maritime cumuli to large-scale processes.
J. Atmos. Sci., 33, 976-991.

Zehr, R., 1976: Tropical disturbance intensification. Colorado
State University Atmospheric Science Paper No. 259, Fort Collins,
Colorado.



APPENDIX A

Finite Differencing of the Large-Scale Governing Equations

A.1 Space Differencing

For 31 more complete discussion of the derivations of the finite
differencz equations the reader is referred to Hack and Schubert (1976).
In the vertical we denote by integer k (1,2,3...K) those Tlevels
at which the prognostic variables u, v, T, and q are carried (see Fig.
A.1), and by the half integers (1/2, 3/2,...K+1/2) those levels where

o is carried. The integer level k is representative of a layer of

thickness
Agk = Ok+]/2 - Ok-l/z s (Ao])
so that
K
L boy =1
k=1
We define
o = %(Uk+% + Ok—%) (A.2)

For the horizontal we will use a distribution of variables as
shown in Fig. A.2. The variables u and v are carried at the half
integer Tocations in the horizontal domain while w, T and q are carried
at the integer locations. Horizontal momentum fluxes are also defined
at the half integer positions. Thus we are led to Fig. A.3 as a 3-
dimensione1 conceptualization of our finite difference mesh.

We will now write the discrete analogues of (2.16)-(2.25). They
appear in differential-difference form, leaving the time differencing

to a discussion at the end of this appendix.
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The mass continuity equation takes the forms

BHi

ot

Si ks = S

where we have defined

and where

The hydrostatic
K
%5,k " kZ1 Erick

and by

Pik k1 T S [Pk T ke *B

where

K
= L Fragim Fr) Sy
k-5 "3t Tt Fiagk

Py k = Pr¥miog -

equation is given by

Pik

0 or any value for

ps K

1/2 1~ _J_’_ki for
Pik

| Piuken®

3 [—5;—;—1 - 1{ for

0 for

R
m oy 2%k Cp(gk-‘/z“i,k+0k+1/281,k)] Tik

T

i,k'1,k

(A.3)

(A.4)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)
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L

Figure A.3 Three dimensional conceptualization of
vertical and horizontal finite differencing
scheme.
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The equation of state is

-1_
i,k

.k (A.12)

The radial and tangential momentum equations are given respectively by

3 _ . -
at Mialiag k) = -%[Fiﬂ,k(“i+‘/2,k+“1’+3/z,k) Py Uy * ”i+‘/z,k)J

"I = .
" Io, T[T (PR CTPOPRRY [ VRS (TP *“1+1/2,k)]
ta l:("i e (Gt C1+1,k)] Visg,k
ris,

-5 [(ni+ﬂi+])(¢i+1’k'¢i,k)+‘[(Oﬂp'1)i,k+(0ﬂp'])i+1’k](ﬂ1+1-ﬂi)J

(A.13)

-F

5t Wiaing, ) = 5 P01 Vg, kVie ¥, ) i,k("i-»z,k“’iv/z,k)]

'l ~—~ @ L]

* B 5| StV kY1)~ St eV k1 Vi )

T % [("i”“n])(ci,k’“ciﬂ,k):l Yiasg kP Sy (A.14)
175,
where

Mo = %05 + 000 (A.15)
R (TP A (A.16)
Siang ket = 305 kg ¥ S k) (A-17)
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= Ar
RT,
-1 - i,k
(omo "); ¢ = 0Ty st (A.19)

The thermodynamic equation is written in its final form as

) . )
3t (T4 1) %[Fi+1/2,k(T1‘,k+Ti+1,k) Fi-!/z,k(TM,k”i,k)]

ikt k1 T4 k1)

- i,k-a(Ti,k*'Ti,k-1'*zsi,k-lTi,k-1?]
(omo”]
omp )i,k oIl
H— 5t * [(r“)i-g(ﬁi‘“i-1)+(r“)i+g(“i+1'”i)]
+%—@{)+@ST (A.20)
p i,k
And finally, the continuity equation for water vapor may be
written
, q. , +q. qa. . +q.
3 - i,k i+1,k) i-1,k " 7i,k)
5t 194,k [}1+z,k { 7 " Pk [ 2 J]
.I [ ] L]
T Boy L3kl ke T 1 ki kg | T CPED gy T S0:
(A.21)

A.2 Time Differencing

The time differencing for the governing equations is accomplished
with a leapfrog scheme coupled with an Asselin (1972) time filter. We
illustrate the time differencing procedure by applying it to the
equation

Y- ) . (.22)
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The Teapfrog scheme can be written

n+1) n-1)

oD 2y (0m1) o [y (A.23)
where the superscripts denote discrete time levels. The Asselin time
filter is applied in order to avoid separation of the odd and even

time steps (sometimes referred to as time splitting) and can be

written

gl =y g gt gy )] (h.24)

where a is the filter parameter.

In order to begin the time stepping procedure, information is
needed at two time levels since the leapfrog scheme is a two level
scheme. Consequently, a simulated backward time difference (Matsuno,

1966) is used for the first time step such that

o = 4 (0) g £y (00) (A.252)

o= 0 e (0% (A.25b)

where the * denotes a tentative value. The time stepping procedure
then proceeds as shown in table A.1. We note that all diffusion

(decay) terms are evaluated using a forward time difference, i.e.

l[)(n+]) - l[)(n-]) + 2At f(w(n_])] ] (A.26)

The timz differencing scheme must maintain the CFL (Courant,
Friedrichs, _ewy, 1928) linear stability criterion which can be stated

as

vAt <1, (A.27)



194

Leapfrog scheme
Asselin filter
Leapfrog scheme

Asselin filter

Leapfrog scheme

Asselin Filter

(2) 0)

o2 2 (00 4 one [y (M)

=y 4 2[00 (1) (@)]

HONE UG

ﬁﬂ=wﬂ)+%@ﬂ)_wﬂ)wﬁq

w(n+1) - a(n-1) + oML f{w(n)}
7(n) =)y %[w(n-n P LN 1p(n+1)]

Table 4.1. Time stepping procedure
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where v is the frequency, and At is the time step used in the time

differencing procedure described above. An estimate of the maximum
time step can be made by considering the dispersion relation for the
shortest wave that can be represented in the model (2Ar) which moves

with a phase speed (gh)%. We have

1 1.
v = (FPrgh kKB) P = (F2 + gh [Al‘r—)z)z (A.28)

The results of section 3.2 show that the fastest moving wave in the

numerical mode]l is associated with the external mode which has a

phase speed (gh)%=288 m/s. Choosing Ar=15000 m and f=5x 1025
we obtain the resu1t]
At < 16.6 seconds . (A.29)

This should only be regarded as an estimate of the maximum time
incremen: since the dispersion relation is distorted by the finite
difference grid, especially for short (2Ar) waves (see Arakawa and
Lamb, 1976; Fig. 5). Numerical tests have indicated that for a 15 km

grid, a 20 second time step remains computationally stable.

! For phase speeds typical of the external mode the contribution
of the Coriolis parameter f, to the frequency v is negligable.



APPENDIX B

Vertical Differencing of Parameterized Convection

In this appendix, we present the vertically discrete forms of the
equations presented in sections 2.2.2 and 2.2.3. We begin with the

finite difference analogue of (2.45) for which we have chosen the form

Mgy, = [T+ A (8p), ] Mgtls,n ° (B.1)
where
(Ap)p = pk+%-pk-% s (B.Z)

and the subscript n identifies a specific cloud type, the discrete
analogue of a sub-ensemble (cloud type n implies detrainment at level
n). Note that the horizontal index is neglected in the formulation of
this finite difference set of equations.

Using (2.45) we can see that (2.46) may also be written

2 In(p.a)h (p.0)] = BUBALF (p) (8.3)
P c op
The corresponding finite difference equation is
- h, , (B.3
Nk-33,n hck_l/z,n Mctzn I Cat = [Measgyn =M, ] P (8.3)
which by (B.1) becomes
1
h - [h A, (8p) By } : (B.4)
Ck=1s,n 1+An(Ap5k Chats,n k'k

In a similar manner the discrete form of (2.47) can be written

1 ] __t
+ = _ ry —
qu_%’n zk-%,n ]+AniApjk [qck+%,n k+%,n "( p)k qk

- colk_l/z,n(Ap)k . (B.5)
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The discrete form of the saturation relation (2.48) is simply given by

q N SN I _F (B.6)
Ck—%,n k-% 1+~yk_1/2 L [ Ck-%,h k-%
In order to determine the above budget quantities, the fractional
entrainment rate A must be known. Let us restate (2.49) as
h*(p) - h (p.p) =0 , (8.7)
where
h*(p) = Fi¥ TR [s@(p) - a(p))] (8.8)
and
e(p) = ¢, T(p)/L . (B.9)

The entriinment rate kn is a root of the discrete form of (B.7) and can
be determined iteratively by defining the function

~

.Gn = h;'- hcn’n . (B.10)
Although Newton's method can be used in the solution of (B.7), the com-
plicated form of the derivative of‘Gn makes this approach more costly
from a computational point of view than other methods. Consequently,
the variable scant method is used to solve for the fractional entrain-
ment rate Ay This procedure, which requires two initial guesses,

can be written as

Vi, V v-1
vl _ v Gn [An - A ]
e A - - _1 , (8.11)
g’ -6V
n n

where the superscripts denote iteration level. Convergence to
Gn < 1.0 J/kg can be expected in 4 or 5 iterations.
Finally, the discrete analogue of the cloud work function must

be defined. Let us first rewrite (2.52) as
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N

Py ) o
MG = [ B(eIn(p.B) Ing(p,B) - e(p): 2

o p
pp(p)
Pg
vol [ elon(ed) [ -TI R L (8.12)
pp(P)
where
8(p) = iiéf (B.13)
The discrete form of (B.12) is then written
- Kz1 _ _
A B I Mooy [h - *{](Ap) .
Ken k”=},n Ch1n k k
+Nyayy o [h - ] (ap) .
k“+s5,n [ Ch k.0 k ] k
K-1 _ _ _
*
+ 6'. k’-z_-n ek/ *nk’-l/z,n [qk’ qk’] (Ap)k;
— — +
+ nk'+1/2’h[q|z‘» - qk’] (AD)kf ’ (B.]4)
where we have defined
(30) " 2P = pyy)
S CRET )
(B.15)

( )+ _ 2(pk+1/2-pk)
e T



APPENDIX C

Numerical Procedures for Large-Scale Condensation and Dry Convection

C.1 Largje-Scale Condensation

At level k, let the temperature be denoted by Tk and the water
vapor mixing ratio by q - If q is larger than the saturation value
q;', a certain mass of water vapor per mass of dry air must be con-
densed]. This condensation, denoted by CkAt, will reduce q to q£

and increase Tk to Tk ’

a0 = 9, - C At (c.1)
Tr=T + L ¢oat (C.2)
KT Te o) et :

The new water vapor mixing ratio qg is the saturation value at

the new temperature Tk s
qkl = q*(Tk" pk) . (C.3)

Equations (C.1), (C.2) and (C.3) form a closed system in the unknowns

Gy » Tk and CkAt -G and CkAt can be eliminated to give

o}
q - a*(T . p) - £ (T =T ) =0, (C.4)

Because of the complicated form of the function q*(T,p) an
explicit equation for Tg cannot be derived from (C.4). However, an
iterative scheme can be developed by applying Newton's method to (C.4),

(Hack and Schubert, 1976).

1The vapor is condensed to liquid water. The ice phase is not
considered.
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C.2 Dry Convection (Dry Convective Adjustment)

At level k, let the temperature before adjustment be denoted by
Tk and the temperature after adjustment by Tg . Then, if the adjust-
ment involves the contiguous Tayers beginning with kb and ending with
ke’ we can write

ke ke

sz' ho, = ) T boy - (c.5)
k=ky k =k

If 8 denotes the potential temperature which results from the adjust-
ment, then
Pk

K
T, = bij o for kbfj(ike . (c.6)

Substituting (C.6) into (C.5) we obtain

k
e

) T Aoy

e
pk K
k=k, L ©°

b

After computing 6 from (C.7) we can easily compute T, from (C.6).

This procedure may result in an unstable potential temperature strati-
fication at intervals which border kb and ke, in which case the pro-
cedure is repeated with new kb and ke' The procedure is complete when
there exists no single pair of k and k+1 for which ek<:ek+1 for any

integer 1<k<K-1, i.e. when a stable temperature stratification in

the entire vertical column is reached.



APPENDIX D

Finite Difference Form of the Divergent Barotropic System of Equations

The nonlinear divergent barotropic system of equations can be

written in flux form as

2 (sru)+ == (gruu) - (F+X)grvegr 22 =0,  (D.1)

K] 9 v —

5E-(¢rv)4- 5;-(¢ruv) + (fi-;d éru =20, (D.2)
3r , déru  _
T%?'+ or -0 - (D.3)

In differential difference form they become

1
3t - P Fi) (0-4)
3 -
3t (Qulin) = - % {Fiﬂ (Uagg F a9 ) - Fylug b)) }
r.
i+ _
# 3 {0t (tor )] Vigs w52 (04%5,9) (6447784) » (0.5)
) _
ot (¢)'|+1/2V1+1/2) = -3 {F1-+-|(V_i+1/2+v1-+3/2 ) - F'i(u'i-l/z+ui+1/2)}
- %{(¢i+¢1+1) (C.i+c.i+'|)} U.H_1/2 ] (D'6)
where
®i = ¢iriAr

= L.+ . .
Fas = 22005%0500) Mia, Ujag,

Fy = %(Fy 5+ Fip)) |
= L
c; = fri Ar+4(v, s + V1+1/2) ar
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Equations (D.4)-(D.7) have been used to produce the rumerical examples

in section (3.5.1).



APPENDIX E

Solution of the Discrete Vertical Structure Problem For
Implementation of the Lateral Boundary Condition

The vertically discrete flux forms of (2.2)-(2.7) can be linearized

about a resting basic state and written as

Iy +l[¢ +c—7-k—;i(n/F)J =0 , (E.1)
ot k  or |7k Pk

kg =0, (E.2)

SQ’E [%] ] -kZK1 8rr:rk (a0)y (E.3)

&k+% = [?k+% é%-[-%:]4-kr] 22;#—(A0)%] , (E.4)

5t k== |3t k Tor
pkcp
— \K (E.5)
+ EE 1 Oy ir Brii =~ O .8, =0
Po ZAOSk ks "kt k-%"k-% ] '

The geopotential O is determined from the linearized discrete hydro-

static equation

K —— —
o Lok * oo Tef* oy S G Ten B T }
K
* z %[Gk(Ad)k T - Cp(ck+1/2 B-k + O’k_z/2 Ek)] Tk}
Pk
k-1 _
" k,Zk Sploesy Ty + 8 Tie) (E.6)
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where
0 for k = 1
o, =
k = 3K

D, - o of

%’ Ef‘ [:ﬁ" :}L;LJ for k=1
CP ) LR P
r.rj. K g o

K | "k+] k+1 k -

5 = [__ ——} for k = 1,2, ,K-1

Bk’ = \ pk J pk+-| pk

) for k = K

0 for k=1
O = E_] «
1/2 1 il B fOY' k>] )
Py
— K
Y
1 { E”} -1 for k=1,2,...,K-1
ék = Py

0 for k=K . (E.7)

Equations (E.4) and (E.5) can be combined with the use of (E.3) to give

aT ™o K aru oru
k k = k = k
+( } k=1 Tor (Ac)k * T Yor

Ek ) 1 — r K SY‘uk K BY‘uk,
IR T N e R e

_ K oruy K oru, - ‘
" Bk [(Ok-»;” Ly o Mt L e (Aj)k’] - (E-8)

We assume (as in the vertically continuous case) that
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where

Since by definition

dHé1%nr)

7 = -n Hf1%nr)

and
der])(nr)

rdr = n Hé])(nr) ?

equatiors (E.3), (E.1), (E.2) and (E.8) can be written

I 'z< (a0)
v — = - n U (Ao s
. oI
v Uk-ka—n @k"'_— =0 s
Pk

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)
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Thus, for specified wave number n, (E.11)-{(E.14) and (F.6) constitute
an eigenvaliue probiem where iv is the eigenvalue and the quantities
I, U, V and T comprise the eigenfunctions {or vertical structure
functions). Since in the vertically continuous problzm we consider
the case for Targe n oniv, eguation (E.13) can be neglected as can
the term ka in (E.12). This approximation eliminates the stationary
geostrophic modes from the problem and allows the eigenvalue to become
%%-, the pure gravity wave phase velocity for the cor-esponding ver-
tical structure functions. For a model with K levels, the eigenvalue
probiem can be solved numerically to yield 2K+1 eigenvalues and
eigenfunctions. The eigenvalues correspond to K inwa~d propagating
modes, K cutward gropagating modes, and a stationary :omputational
mode which arises due to the Lorenz (1960) type verti:.al differencing

employed in the model {i.e. non-staggered temperature).
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