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ABSTRACT 

BALANCED DYNAMICS FOR THREE DIMENSIONAL CURVED FLOWS 

Modern balanced dynamical systems, such as the nondivergent barotropic model and the 

quasi-geostrophic and semigeostrophic theories, have been considered as alternatives to the 

primitive equation system in situations where the inertia-gravitational oscillations do not 

shape the flows significantly. These balanced theories have provided key understandings of 

what is known today about atmospheric and oceanic motions. These include for example, 

propagation of Rossby waves, synoptic weather systems associated with barotropic and 

baroclinic instabilities, fronts and frontogenesis, etc. There is, however, a serious limitation 

in these theories: they can not describe flows with large curvature, because the centrifugal 

force associated with the curvature of the flow is absent in the balanced assumptions of 

these theories. This defect of balanced systems obviously exciudes their application to a 

large number of flow situations, especially the circular vortices which are ubiquitous in 

the atmosphere and ocearn. The currently existing symmetric balanced theories, such as 

axisymmetric balanced vortex theory and zonally symmetric theory, are indeed devised 

for fluid motions with large curvature. These theories, however, can only describe zero-

wavenumber motions (i.e., symmetric flows). Any eddy motions superimposed on the 

symmetric flows are absent in a complete picture of atmospheric dynamics. 

Here we present a mixed-balance theory which can be regarded as the generaliza-

tion of semigeostrophic theory because it properly inciudes the curvature effect. This 

theory can simultaneously be regarded as a generalization of the balanced symmetric the-

ory because it extends to three dimensional motion. The theory involves a combined 

geostrophic and gradient momentum approximation and canonical transformations by a 
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set of quasi-Lagrangian coordinates. Formally similar to QG and SG, this system reduces 

to a compact mathematical formulation: a predictive equation for potential vorticity (or 

its reciprocal, potential pseudodensity), and a diagnostic equation which inverts PV to 

obtain the balanced mass and wind fields. The new balanced system preserves all the 

conservation principles. The linear solution of the new balanced system about a basic 

state Rankine vortex reveals a class of high frequency Rossby waves, which have been 

confirmed by comparison with the eigensolutions of the primitive equation model. These 

high frequency Rossby waves could be dynamically important to the stability of a circular 

vortex. A combined barotropic and baroclinic instability theorem of the Charney-Stern 

type is also derived. 

The proper Hamiltonian structure associated with the primitive equations and the 

mixed-balance equations is explored, and their canonical equations are obtained through 

the Clebsch transformations. 
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Chapter 1 

INTRODUCTION 

Two of the most conspicuous features of the planet on which we live are its nearly 

spherical geometry and its constant rotation about its own axis. These features determine 

to a large extent that the motions of the fluids covering the earth's surface (i.e., the 

atmosphere and ocean) are inevitably highly curved and inherently endowed with vorticity. 

Figure 1.1 is a satellite image of the Pacific basin, which shows the characteristic flow 

patterns on the earth. Here we would like to point out a few circulation patterns that 

illustrate our point: a nearly circular flow pattern associated with a tropical cyclone 

at 20°N over the Eastern Pacific; a maritime extratropical cyclone centered at 45°N off 

the west coast of North American; and the polar vortex circulation near the south pole. 

All these flow patterns possess large curvature, and it is most likely that the curvature 

vorticity is as large as the shear vorticity in these flow systems. There is no doubt that 

these flow systems can be understood most easily by vorticity dynamics or, more precisely, 

by potential vorticity dynamics when the stratification of the fluid is taken into account, in 

which case an accurate PV inversion operator is needed to include the curvature vorticity. 

The currently existing balanced models are not general enough to deal with the fluid 

motions discussed above. As an introduction, in this chapter we first give a general review 

of the historical development of balanced dynamics, after which we set forth our research 

objectives and illustrate how the current study fits into the general scheme of balanced 

dynamics. 

1.1 Historical review of balanced dynamics 

Atmospheric motions are governed by a set of physical laws: Newton's law of motion, 

the law of fluid continuity, the law of thermodynamics and the equation of state. The set 
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Figure 1.1: GOES VIS image of the Pacific basin at 1945 UTC on 29 July, 1978. 
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of partial differential equations mathematically represented these physical laws is known 

as a set of nonlinear wave equations, the solutions of which depict a family of wave motions 

in the physical world. In this sense, unlike modern physics where there was considerable 

debate about whether phenomena assume wave-like or particle-like properties (the well-

known wave-particle duality) when the spatial scale is down to the size of molecules or 

atoms, the atmospheric and oceanic motions are almost certain to be engraved with wave 

properties. These governing equations constitute such a general dynamical system that it 

encompasses all the realizable motions in the atmosphere whose spectrum ranges from fast 

oscillating sound waves, gravitational waves to slowly varying rotational modes. The large 

scale motions in the atmosphere, the scale at which most; weather systems manifest them-

selves, are mainly characterized by oscillations with low frequencies, while the acoustic and 

gravitational modes, though possible solutions of the original governing equations, possess 

insignificant amplitude at this scale (Charney, 1948). The inclusion of the fast transient 

modes in the study of large scale atmospheric motion is not only unnecessary, but also 

cumbersome because such oscillations can amplify spuriously during the integration of the 

governing equations even though they are very weak signals in nature, thus erroneously 

representing the real motions in the atmosphere (Charney, 1948; Machenhauer, 1977). 

The generality of such governing equations plus lack of proper initialization procedures 

was responsible for the failure of the earliest attempt at numerical weather prediction by 

Richardson in 1922. 

There has been a long struggle to resolve this problem in numerical weather prediction 

and theoretical dynamics. Recently, there has developed the concept of "slow manifold 

dynamics" in which two basic approaches have been investigated to filter the unwanted 

frequencies (Leith, 1980). As schematically shown in Figure 1.2, the first approach is called 

the nonlinear normal mode initialization. The procedure is to keep the model equations 

unmodified but to choose the initial state to be in some sort of balance so that the fast 

transient noise is constantly suppressed during the model integration. This approach is 

preferred by numerical modelers, for it supposedly produces the most accurate simulations. 

The second approach, known as balanced dynamics, is to derive a set of simplified model 
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equations from the original governing set in such a way that it only predicts the slow 

transient modes while preserving a set of approximated conservation principles. In the 

context of this approach, Lorenz (1960) has stated: 

"It is only when we use systematically imperfect equations or initial con-

ditions that we can begin to gain further understanding of phenomena which 

we observe." 

"When the dynamic equations are to be used to further our understanding 

of atmospheric phenomena, it is permissible to simplify them beyond the point 

where they can yield acceptable weather predictions." 

The simplification of the dynamic equations involves neglecting some terms in the origi-

nal equations which results in the loss of some accuracy. However, the trade off for less 

accuracy is the simplicity of the system so that the simple, physically revealing solutions 

are obtainable. Furthermore, the balanced assumptions ensure the existence of the invert-

ibility principle, which makes Ertel's law more meaningful and useful in the sense that it 

itself becomes the governing equation for the fundamental advective processes in the at-

mosphere and ocean. The coupling of these two principles forms a closed dynamical view 

for fluid motions governed by PV dynamics. It also provides valuable physical insights into 

dynamical processes in such fluid motions (Hoskins et al., 1985). Therefore, this approach 

has been widely used among theoreticians. The current dissertation research falls into the 

latter category, and will henceforth focus on balanced dynamics. 

Balance is literally understood as the balance of several forces in a mechanical sys-

tem. Such a concept is most likely connected with the statics in which a stationary or 

equilibrium state is achieved under the balance of the forces. In fact, the earliest ideas 

of balanced dynamics in meteorology were related to the equilibrium state of air motions. 

The classical example of these is geostrophic balance. This balance relation is a special 

case of Newton's law in the sense that the particle acceleration is neglected, which results 

in a two-force balanced system, i.e., balance between the Coriolis force and the pressure 

gradient force, shown in Figure 1.3 (a). That the geostrophic relation is a pure diagnos-

tic relation results in the complete absence of any transient wave solutions. Under this 
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Figure 1.2: Schematic depiction of two approaches to simulating slow manifold dynamics. 



6 

balanced dynamical scenario, air steadily flows parallel to the isobars, and low pressure 

is always located to the left of this geostrophic flow in the northern hemisphere. This 

simplified dynamics historically played an important role in understading the basics of 

meteorological fields, and it still is the fundamental tool for synoptic weather analysis. 

During the early part of this century, meteorologists began to realize that the geostro-

phic wind relation was not a fully valid diagnostic tool when the flow had large curvature. 

In fact, the velocity is often in a subgeostrophic situation when flow is curved cyclonically, 

and in a supergeostrophic situation when flow is curved anticyclonically. Observations 

show that within sharp troughs in the middle-latitude westerlies this subgeostrophy can 

reach as much as 50%, even though the streamlines tend to be oriented parallel to the 

isobars (Wallace and Hobbs, 1977, pp. 379). Under these circumstances, a third force 

necessarily comes into the balance relation, forming the three-force balanced system shown 

in Figure 1.3 (b). The balance equation involving the Coriolis force, the pressure gradient 

force and the centrifugal force is known as the gradient wind relation; it is commonly 

recognized as superior to the geostrophic wind relation when there is curvature in the 

fluid trajectory. 

Both the geostrophic and gradient wind equations present pure diagnostic relations 

in which the particle acceleration is completely neglected. Therefore, a]l wave motions 

are impermissible in these balanced systems, and the flows are steady. These apparently 

are very crude approximations because in reality winds do change their speed and direc-

tions so that there is substantial particle acceleration. For large scale flow, however, this 

acceleration takes a preferential direction, i.e., the acceleration vector is quasi-horizontal. 

The vertical component of this acceleration is comparatively small. Neglect of the ver-

tical acceleration results in a diagnostic relation, i.e., the hydrostatic equation. The set 

of primitive equations obtained by using the hydrostatic relation is the first simplified, 

legitimate version of the physical laws apart from the traditional approximation (Phillips, 

1966). Although the quasi-static primitive equation model filters sound waves, it is still too 

general from the standpoint of large-scale atmospheric circulations. The further filtering 

process, i.e., filtering of gravity waves, has been an active subject of dynamic meteorology 
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Figure 1.3: (a) Two-force balanced system. The geostrophic wind and its relation to the 
horizontal pressure gradient force Pn and the the Coriolis force C. (b) Three-force balanced 
system. Balance is achieved among the horizontal gradient force, the Coriolis force and the 
centrifugal force, in flow along curved trajectories in the Northern Hemisphere [adopted 
from Wallace and Hobbs, 1977, pp. 377-379.] 



8 

for the last several decades. We consider that the modern balanced dynamics starts here. 

This modern balanced dynamics is distinguished from the previous balanced systems in 

two ways: (1) the balance is in a more transient sense rather than in a equilibrium sense. 

More precisely, this means that the balanced dynamics deals with time evolution of the 

balanced state (e.g., geostrophic balance, or gradient balance), instead of the balanced 

state itself. (2) Balance takes the same meaning as filtering of gravity waves. Filtering 

of acoustic waves is simply not an issue here, and it is assumed that the hydrostatic ap-

proximation is valid whenever it is needed. Similar to the discussion in Magnusdottir 

(1989), Figure 1.4 presents a brief summary of research on this subject. On the top of the 

page is the primitive equation system, and various balanced models are listed below. The 

column on the left presents three dimensional theories, the one on the right two dimen-

sional theories. Proceeding up the page in this figure the models become more general. 

They approximately follow the historical development with a somewhat interesting path 

in the sense that there was a big jump from the primitive equations to the first balanced 

model, the so-called nondivergent barotropic model, introduced by Rossby in 1939. Then 

the oversimplification was corrected little by little back towards the primitive equations 

as more generalized versions of balanced models were developed. The balanced models 

become more general in two ways as you go up the page. First, the earth's geometry is 

better represented, progressing from ƒ-plane to β-plane to the full spherical representa-

tion. Secondly, the assumed balance becomes more general as we go from geostrophic 

balance to gradient wind balance to even higher order balances. 

As we have mentioned previously, the nondivergent barotropic model (shown in the 

bottom of Figure 1.4) came as the first of its kind in filtering the gravity waves while 

preserving the slow rotational modes. Having realized how complex the original governing 

equations are, Rossby (1939) took a simplified vorticity equation that only allowed the 

vertical component of vorticity to be advected on a β-plane by the two dimensional, 

nondivergent winds. The large scale atmospheric flow can be resolved in terms of the 

evolution of the streamfunction which is obtained by inversion of the Laplacian operator 

linking it to the vorticity. By using this simple model, Rossby was able to reveal the 
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essential physics of some sort of long waves caused by the β-effect (this was soon generalized 

to the sphere by Haurwitz in 1940), termed nowadays Rossby waves. More importantly, 

his work presented the most embryonic form of the invertibility principle. 

Charney (1948) introduced the quasi-geostrophic system by using scale analysis, and 

later formally developed the theory in Charney and Stern (1962). The analysis of small 

Rossby number in these studies led to a simplification of the primitive equations in such 

a way that both the advected momentum and the advecting winds are replaced by their 

geostrophic values and the vertical advections are neglected except for the advection of the 

temperature field. This classical theory has been successfully applied to many midlatitude 

large scale phenomena. Important physical insight into the synoptic-scale cyclone waves 

associated with the baroclinic instability of midlatitude westerlies has been gained from 

this theory. Nevertheless, the severe approximations made in this system impede many 

applications to more general physical situations. 

In order to overcome the weakness in the quasi-geostrophic system, Hoskins (1975) 

and Hoskins and Draghici (1977) adopted the geostrophic momentum approximation first 

presented by Eliassen (1948). The approximation allows one to retain a full advective 

operator in the Eulerian form of the equations of motion, while making the advected mo-

mentum geostrophic. A full three-dimensional vorticity equation is obtainable from the 

approximated system, which indicates that the dynamics of the twisting and nonlinear 

stretching of vorticity and the horizontal variation of static stability are all captured. Al-

though it conceptually improves the quasi-geostrophic equations, this set is still awkward 

to use. The real success of semigeostrophic theory is achieved only when the geostrophic 

momentum approximation is accompanied by a quasi-Lagrangian coordinate transforma-

tion, which results in a compact mathematical formulation: a predictive equation for 

potential vorticity and a diagnostic invertibility principle to obtain the balanced wind and 

mass fields. A very interesting and conceptually important note is found in McWilliams 

and Gent (1980) and Schubert et al. (1989). They showed that by simultaneously us-

ing the geostrophic coordinates (with which the horizontal ageostrophic wind becomes 

implicit in the coordinate transformation) and the isentropic coordinate (with which the 
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Primitive Equations 

Three dimensions Two dimensions 

Figure 1.4: The development of balanced dynamical theories. 
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vertical advection vanishes for adiabatic motions), the system reduces to the form of the 

quasi-geostrophic set, which may be considered as the most elegant and concise version of 

semigeostrophic theory. 

Semigeostrophic theory has had a fair measure of success in physical situations such as 

frontogenesis, jets, and squall lines, all of which are situations where the quasi-geostrophic 

theory is not applicable (Hoskins and Bretherton, 1972; Hoskins and West, 1979; Heckley 

and Hoskins, 1982; Montgomery and Farrell, 1991a, 1991b; Schär and Davies, 1990; Davies 

et al., 1991; Schubert et al., 1989; Hertenstein and Schubert, 1991; Fulton and Schubert, 

1991). 

The semigeostrophic equations were originally formulated with a constant Coriolis 

parameter, which severely limits applications to problems with broad spatial scale. This 

limitation has been overcome by several recent studies, e.g., Salmon (1985), Shutts (1989) 

and Magnusdottir and Schubert (1990, 1991). The former two studies derived the set of 

generalized semigeostrophic equations by employing Hamilton's principle, while the latter 

two used more conventional techniques to obtain semigeostrophic theory on the β-plane 

and the hemisphere. 

There are some other intermediate models that are not listed in Figure 1.4. Like the 

semigeostrophic equations, these intermediate models contain physics between that in the 

primitive equations and that in the quasi-geostrophic equations. A quite complete survey 

and a comprehensive study of these models (including QG, GM and SG) can be found 

in McWilliams and Gent (1980). The solutions to different intermediate models have 

been calculated and comparisons of these solutions with those of a shallow water primi-

tive equation model have been presented by Allen et al. (1990a, 1990b) and Barth et al. 

(1990). One class of intermediate models is the balanced equations of the Charney-Bolin 

type (Charney, 1955, 1962; Bolin, 1955, 1956). These simplified systems are obtained 

by deriving a vorticity equation and a divergence equation, and approximating the diver-

gence equation in such a way that all the terms involving divergence of the flow field are 

neglected. The solution of the balanced equation models (BE) can be quite accurate in 

comparison with the PE solution (Moura, 1976; Allen, 1990). Lorenz (1960) has proved 
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that these systems possess suitable energy invariants. However, due to their lack of a global 

conservation principle for potential vorticity, the dynamical view presented by these sys-

tems is less concise than those by QG and SG. Raymond and Jiang (1991) used the set 

of nonlinear balanced equations to study a mesoscale convective system. In their model, 

they impose a PV principle so that the entire dynamical process in a mesoscale convective 

system can still be interpreted in terms of IPV thinking. Recently, Allen (1991) derived 

a new balanced equation model based on truncations of the momentum equations (BEM) 

in which both the potential vorticity invariant and the energy invariant are preserved. 

The term "slow manifold" used in Figure 1.2 is not intended in a rigorous sense, i.e., 

we do not strictly relate the balanced dynamics discussed above or developed in the present 

study to a true mathematical slow manifold or invariant manifold that is associated with 

nonlinear normal mode initialization (Leith, 1980; Lorenz, 1980). This mathematically 

introduced manifold has been conjectured by Leith (1980) and Lorenz (1980) as a state 

being completely devoid of gravity waves, i.e., the super-balanced state. There has been 

considerable debate about whether such a super-balanced state exists or not (Warn and 

Menard, 1986; Lorenz, 1986, 1987; McIntyre and Norton, 1990; 1993). Giving a general 

definition of balanced flow as the flow controled by PV invertibility, Mclntyre and Norton 

argue that it is impossible to find a superinversion operator corresponding to the super-

balanced state since balanced conditions and PV inversions are inherently approximate. 

Any vortical fluid motion described by a balanced theory will inevitably be accompanied 

by the spontaneous emission of inertia-gravity waves no matter how small the Froude 

number and Rossby number. However, the flow continually tries to adjust itself toward 

a better balanced state. Such spontaneous adjustment suggests the existence of the so-

called "quasi-manifold" (their terminology) which is closely related to Warn's fuzzy slow 

manifold. 

1.2 Proposed problems and research objectives 

The quasi-geostrophic and semigeostrophic theories are lower order balanced models. 

(By lower order balance we mean that the balanced relation is a special case of a more 
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sophisticated balanced relation, the higher order balanced relation. For example, the 

geostrophic balance is a special case of the gradient balance, and the gradient balance is a 

special case of the nonlinear balance). These models predict the future state of a two-force 

balanced dynamical system. For fluid motions with large curvature, e.g., those shown in 

Figure 1.1, the solutions from these balanced equations may differ considerably from the 

true solutions. Snyder et al. (1991) conducted a comparison study of the primitive equa-

tion model and the semigeostrophic model in the context of baroclinic waves. They found 

systematic discrepancies between the two model simulations. From a scale analysis, they 

concluded that the differences are due to the improper treatment of ageostrophic vorticity 

in the semigeostrophic model. While this issue needs to be further studied, we feel that 

the error may be partially due to the use of a lower order balanced model to simulate 

the highly curved flow of the baroclinic wave. As Snyder et al. (1991) have pointed out, 

within the cyclonic or anticyclonic regions associated with baroclinic waves, flows are sub-

geostrophic or supergeostrophic. The geostrophically balanced pressure field assumed in 

the semigeostrophic equations must compromise the subgeostrophic (or supergeostrophic) 

flows, thus resulting in less asymmetry in the geopotential field in comparison with those 

from PE simulations. The fact that 2-D semigeostrophic frontal simulations model (the 

references have been listed before) produce quite reasonable results tends to support this 

idea. Similar arguements can also be found in McWilliams and Gent (1980) and Snyder 

et al. (1991), who conclude that SG is a higher order approximation for two-dimensional 

fronts than for three-dimensional baroclinic waves. 

The balanced equation models are presumed to be capable of dealing with these highly 

curved flows. However, it seems that these models (e.g., BE and BEM etc.) have richer 

physics than needed for the flows considered. This fact may explains why the balanced 

equation models are more complicated both physically and formally than QG and SG. 

Another important disadvantage associated with the balanced equation models is their lack 

of closed view of PV dynamics (Hoskins et al., 1985). This may be closely related to the 

fact that these models adopt Helmholtz's decomposition of velocity field so that vorticity 

must be chosen as the fundamental advective quantity in accordance with the notions of 
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streamfunction and velocity potential. In these respects, the balanced equation models 

seem to be designed as models computationally competitive to the primitive equation 

model rather than those conceptionally simpler than the primitive equation model. For 

our purpose here, we need to find a balanced dynamical model which is general enough 

to include fluid motions with large curvature, yet concise enough to preserve the same 

formulation as QG and SG. It is evident that such a balanced theory must assume a three-

force balance, i.e., the gradient wind balance, since it is the only intermediate balanced 

relation between the geostrophic and the nonlinear balance equations. 

There exist several theories based upon gradient balance, e.g., the axisymmetric bal-

anced vortex theory (Eliassen, 1952; Schubert and Hack, 1983) and the zonally symmetric 

balanced theory (Hack et al., 1989; Schubert et al., 1991) as shown on the left side of Fig-

ure 1.4. These theories take the same form as the quasi-geostrophic and semigeostrophic 

theories, namely they reduce to one predictive equation and one invertibility principle. 

With one component of momentum in gradient balance, these theories can simulate the 

hurricane circulation (Ooyama, 1969; Schubert and Alworth, 1985), as well as the Hadley 

circulation (Hack et al., 1989; Schubert et al., 1991) fairly well. However, the deficiency 

associated with these theories is also quite obvious: the circulations described can only be 

symmetric, either axisymmetric or zonally symmetric. These theories treat the three-force 

balanced system as a pure equilibrium state. They cannot depict eddy motions superim-

posed on the symmetric circulations, and the applications must thus be confined to two 

dimensional flows. The three dimensional generalization of these symmetric balanced the-

ories most likely fits into the same position as the generalization of semigeostrophic theory 

by inclusion flow curvature. 

Craig (1991) derived a set of generalized balanced vortex equations from Hamilton's 

principle. Using scale analysis with the assumption that the magnitude of the radial wind is 

much smaller than that of the tangential wind, he was able to approximate the Lagrangian 

in such a form that the radial part of the wind is completely missing from the variational 

principle. The variations of such an approximated Hamilton's principle give rise to a set 

of Eulerian dynamical equations that are nearly the same as the set of Eliassen balanced 
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vortex equations. The only difference between his set of equations and Eliassen's is the 

asymmetry presented in the system. Since the radial wind is absent in the approximated 

Lagrangian, there will be no particle acceleration in the radial direction. This radial 

particle acceleration seems essential to alter the axisymmetric flow. Furthermore, the 

vorticity vector in his system has only two components. The tangential component of 

the vorticity is missing due to neglect of the radial velocity. Intuitively, the asymmetric 

flow in a vortex is most likely to be associated with the tangential component of vorticity. 

Neglect of this component of vorticity seems to sacrifice the physics that is necessary to 

generalize Eliassen's axisymmetric vortex theory. This may indicate that Craig's model is 

not general enough to describe a fully three dimensional flow. 

In this study, we will develop a balanced theory for fully three-dimensional, highly 

curved flows. Two versions of this theory are derived in separate chapters (see the outline 

below). The first is a theory for balanced vortices on an ƒ-plane, and the second is 

the theory for planetary circulations with the centrifugal force induced by the earth's 

geometry. As discussed previously, this theory can be regarded as the generalization 

of semigeostrophic theory by using the gradient wind balance, or the generalization of 

symmetric balanced theory by changing the diagnostic relation for the gradient wind to a 

corresponding prognostic relation. The proper position of this balanced theory is shown 

in Figure 1.4. The upper most box is for an even higher order balanced theory yet to be 

discovered for more general physical situations. 

The outline for the present study is as follows. In Chapter 2, we begin with the set 

of primitive equations in cylindrical coordinates on an ƒ-plane. After conducting a small 

Rossby number analysis, we make a combined geostrophic-gradient momentum approx-

imation in the primitive equation system. Following the formalism of semigeostrophic 

theory, the approximated system (which we refer to as the mixed-balance equations) is 

transformed to a new space constituted by a set of vortex type of coordinates. In trans-

formed space, we are able to reduce the balanced system to two fundamental equations: 

one prognostic equation for potential pseudodensity and one invertibility principle. Vari-

ous physical aspects are discussed during the derivations of the mixed-balance equations, 
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and the conservation principles associated with the mixed-balance system are also derived. 

In Chapter 3, we generalize all the results obtained in Chapter 2 for the ƒ-plane theory to 

the sphere. Therefore, the procedures are parallel to those in Chapter 2. Chapter 4 serves 

as a preparatory analysis for the comparisons made in Chapter 5. In this chapter, we will 

solve for the eigenvalues and eigenfunctions of the linear primitive equation model and 

of the nondivergent barotropic model. Two basic states are considered in these studies: 

a resting basic flow and a Rankine vortex. In Chapter 5, the mixed-balance equations 

are solved on both the ƒ-plane and sphere. The eigensolutions obtained from these sys-

tems are compared with those from the primitive equations. A class of high frequency 

Rossby waves is identified from the eigenvalue spectrum, which may be of importance both 

theoretically and practically. Chapter 6 addresses the stability problems associated with 

the mixed-balance system. In particular, combined barotropic and baroclinic stability 

theorems of the Charney-Stern type are derived. The related theoretical frameworks of 

generalized wave-activity and Eliassen-Palm flux are discussed. In Chapter 7, we discuss 

balanced dynamics in the Hamiltonian mechanical framework. We first demonstrate how 

to use a set of Clebsch velocity potentials to transform the primitive equations to their 

canonical forms. The same results are obtained by combined use of Hamilton's principle 

and Clebsch velocity representations. If we simultaneously approximate the Lagrangian in 

the variational principle and Clebsch velocity potentials, the canonical equations in associ-

ation with the balanced system can be obtained. This may point to a general methodology 

to obtain a balanced system and a general structure that a balanced system may have. 

Finally, in Chapter 8, summaries and conclusions are supplied. 



Chapter 2 

THE GENERALIZED ELIASSEN BALANCED VORTEX THEORY 

In this chapter, a three dimensional balanced vortex theory will be developed. In 

order to give a complete discussion of this topic, we review in section 2.1 some of the basic 

theory of the primitive equations in cylindrical coordinates as well as the conservation 

properties associated with this system. Beginning in section 2.2, a mixed geostrophic-

gradient balanced system will be derived and constructed. Some prior discussions such as 

the small Rossby number analysis, the combined geostrophic-gradient momentum approx-

imation and the conservation theorems will be conducted in section 2.2. Section 2.3 brings 

in the topic of the coordinate transformation and the canonical momentum equations. In 

section 2.4, the potential vorticity principle (or the potential pseudodensity principle) in 

association with the mixed balanced system is derived. To complete the balanced model, 

section 2.5 addresses the practical question of how the predicted PV is inverted to give 

the useful dynamic and thermodynamic information, namely the question regarding the 

invertibility principle. Section 2.6 serves as a comparison study, in which we intend to 

show that for the two dimensional case, our 3-D balanced vottex theory systematically 

reduces to the Eliassen axisymmetric balanced vortex model (Eliassen, 1952; Shutts and 

Thorpe, 1978; Schubert and Hack, 1983; Schubert and Alworth, 1987). 

2.1 The primitive equations 

We consider a stratified fluid under the earth's gravity g on a rotating planet. The 

Euler momentum equation in vectorial form can be written 
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where u = (u, v, w) is the three dimensional velocity, Ω the angular velocity of the earth, 

F the frictional or other external body forces, and the other notations are conventional 

in fluid mechanics and atmospheric science. To complete the dynamic model, one also 

needs the continuity equation, the thermodynamic equation and the equation of state. 

For simplicity, we will not list them here. 

For meteorological applications, the traditional approximation is commonly invoked, 

i.e., the radial position of a fluid particle is expressed as r = a + z (where a is the earth's 

radius and z the local vertical elevation), and the horizontal component of the Coriolis 

acceleration is neglected to be consistent with the tota] energy and angular momentum 

principles (Phillips, 1966). With this approximation, (2.1) becomes 

after use of the vector identity (u • = (• x u) x u + ^ • ( u • u). The Coriolis parameter 

ƒ = 2Ω sin φ, and φ is the latitude. In this chapter, we will focus our attention on the 

ƒ-plane problem. In other words, we will neglect the earth's geometry for the time being 

and, consequently, treat ƒ as a constant in the following derivations. 

We shall now choose a coordinate system to expand the governing equation (2.2). 

Since the theory developed in this chapter is mainly devised to study the circular type 

of flows in the atmosphere, we consider a set of cylindrical coordinates (r, φ, z) with r 

being the radial distance from the axis of the vortex, φ the azimuthal angle and z the 

vertical elevation. The three dimensional winds are then the radial, tangential and vertical 

velocities and the gradient operator expressed in this coordinate system is 

The decomposition of (2.2) into three component equations in the cylindrical coordinate 

system results in 

( 2 - 2 ) 

(2.3) 

(2.4) 

(2.5) 
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Note that unlike the fluid equations in rectangular cartesian coordinates, the nonlinear 

curvature vorticity appears explicitly in (2.4)-(2.5). 

So far, since we have not introduced any filtering process in the governing system, 

(2.4)-(2.6) together with the continuity equation, thermodynamic equation and equation 

of state are able to resolve any mode of the motions in the atmosphere. In fact, the 

eigensolutions of (2.4)-(2.6) can be categorized into two linear manifolds (Leith, 1980): 

the slow manifold in which the flow motions are characterized by time scales larger than 

or comparable to one pendulum day, and the fast manifold in which the flow motions 

are characterized by time scales much smaller than one pendulum day. The fast class of 

eigenmodes first filtered from the above governing set is the acoustic waves which possess 

the least energy in the atmospheric motions. This filtering process is implemented by 

using the hydrostatic balance approximation such that 

which is justified for atmospheric motions in which the vertical depth scale is considerably 

smaller than the horizontal length scale. 

Along with the introduction of this quasi-static approximation, a body of theory on 

vertical coordinate transformations has been developed in which the geometrical altitude 

need not be considered as the only choice of vertical coordinate. In fact, any piecewise 

monotonic function of height can be selected as the vertical coordinate through use of 

(2.7). A particular choice of the various vertical coordinates, such as pressure, log-pressure, 

sigma, pseudo-height and potential temperature, is usually more phenomenological and 

closely related to a particular model system. In the context of semigeostrophic models, 

the θ-coordinate plays a special role in, combined with the geostrophic coordinates, sys-

tematically transforming the semigeostrophic equations to an almost identical formulation 

to the quasi-geostrophic model (Schubert et al., 1989). The discussion of the pros and 

cons of utilizing different variables as the vertical coordinate can be found in Kasahara 
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(1974). In the current study we propose to use entropy as the vertical coordinate. While 

retaining all the advantages of potential temperature as the vertical coordinate, the en-

tropy coordinate provides an elegant form of the hydrostatic equation in which, unlike in 

the θ-coordinate (Schubert et al. 1989; Magnusdottir and Schubert 1990,1991), the Exner 

function does not emerge and therefore we do not have to introduce this extra variable in 

the model equations. Moreover, the numerical computation for the invertibility principle 

is also simpler in the entropy coordinate (Fulton and Taft, 1991). After some elementary 

derivations using the specific entropy s = Cpln(θ/θo), we obtain the primitive equations 

expressed in the cylindrical and entropy coordinate system (r, φ, s), 

where 

is the total derivative, M = cpT + gz the Montgomery potential, σ = -∂p /∂ s the pseudo-

density in s-space, (u, v,ṡ) the radial, tangential and vertical components of the velocity. 

Here we see that for adiabatic flow, the vertical advection will be implicit in the coordi-

nate system. For diabatic flow, ṡ is prescribed. Therefore, the thermodynamic equation no 

longer serves as an explicit model equation, rather it is implicit in the coordinate system. 

This simplification may be another advantage of using entropy as the vertical coordinate. 

While the frictional force and diabatic heating are either specified or given by some pa-

rameterization schemes for the pertinent physical processes, together with the equation 

of state, (2.8)-(2.11) form a closed system. By giving the proper initial and boundary 

conditions, the five equations are to be used to solve for five unknowns u, v, M, T and σ 

with the independent variables r, φ and s. 

(2-8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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2.1.1 The conservation principles 

Although the primitive system results from both the traditional and the hydrostatic 

approximations to the exact system, it nonetheless preserves a set of physical principles 

similar to those of the original system. These include the principles of angular momen-

tum, energy, vorticity and potential vorticity. From the viewpoint of Hamiltonian mechan-

ics, the foregoing approximations, apparently, do not destroy the intrinsic symmetries of 

the original Lagrangian, thus the existence of these invariants are naturally ensured by 

Noether's theorem (this subject will be discussed in more detail later in Chapter 7). Here 

we derive a set of physical laws associated with the primitive equations in a conventional 

manner. The purpose of the following somewhat detailed derivations is not meant to 

duplicate the known facts but rather is intended to set up a procedure to be used as a 

parallel comparison with the balanced system that will be explored in the next section. 

a. Angular momentum conservation 

In cylindrical coordinates the absolute angular momentum is defined as 

m = rv+1/2ƒr2. (2.13) 

On taking the material derivative of (2.13) and using (2.9), the absolute angular momen-

tum principle is easily obtained: 

(2.15) 

by using the continuity equation (2.11). In an attempt to integrate this equation, we 

now encounter the traditional difficulty of using the isentropic coordinate system when 

the lower boundary is not a coordinate surface. Here we use the massless layer method 

to resolve this problem. The idea was originally proposed by Lorenz (1955) in defining 

available potential energy, and later it was adopted in many different contexts such as 

(2.14) 

For axisymmetric flow, the absolute angular momentum is a materially conserved quantity. 

Equation (2.14) can also be written in a flux form 
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baroclinic instability (Bretherton, 1966; Hoskins et a1,1985), surface frontogenesis (Fulton 

and Schubert, 1991) and generalization of the Eliassen-Palm theorem (Andrews, 1983). 

The idea is to assume that isentropic surfaces cross the earth's surface, continuing just 

under it with pressure equal to the surface pressure. At any horizontal position where two 

distinct isentropic surfaces run just under the earth's surface, there is no mass trapped 

between them so that σ = 0 there. Let us regard the bottom isentropic surface sB as 

the largest value of s which remains everywhere below the earth's surface. Assuming that 

ṡ vanishes at both the bottom and top boundaries, and taking the periodic condition in 

azimuthal direction, we then integrate (2.15) vertically from sB to the upper isentropic 

surface sT and azimuthally from φ to φ + 2π. The result is: 

J^ J J mσrdφds + -j^- j j muσrdφds = - J J ^^-σrdφds + J J rFφσrdφds, (2.16) 

where it is clearly seen that the time rate of change of vertically and azimuthally in-

tegrated absolute angular momentum is due to the angular momentum flux across the 

radial boundaries and the generation (or dissipation) forced by the pressure and frictional 

torques represented by the two terms on the right-hand-side of (2.16). 

b. Energy conservation 

The kinetic energy principle can be obtained by adding u times (2.8) and v times 

(2.9). In doing so, we obtain 

DK ∂M ∂M _ , „ 
' ln+ul»+v7∂φ = uF' + vF*\ (2-17) 

where K = ^(u2 + v2) is the quasi-static version of kinetic energy. Combining this result 

with (2.11) we obtain 

∂lσK) ∂(σruK) ∂(σvK) ∂(σsK) , ∂M , ∂M , _ , „ . 
- V + ^ ∂ S 2 + " b r + " V + σ u " ∂ T + σv7∂φ = r + (2-18) 

After manipulation of (2.18) using the continuity and hydrostatic equations, the mass-

weighted kinetic energy equation can be written as 

! < " ) + £ < « ™ < * + f ' » + <«<* + +1 ('«* + " "I) 
+σa u = σ(uFr + vFφ), (2.19) 

(2.16) 

where it is clearly seen that the time rate of change of vertically and azimuthally in-

tegrated absolute angular momentum is due to the angular momentum flux across the 

radial boundaries and the generation (or dissipation) forced by the pressure and frictional 

torques represented by the two terms on the right-hand-side of (2.16). 

b. Energy conservation 

The kinetic energy principle can be obtained by adding u times (2.8) and v times 

(2.9). In doing so, we obtain 

(2.17) 

where K = 1/2(u2 + v2) is the quasi-static version of kinetic energy. Combining this result 

with (2.11) we obtain 

(2.18) 

After manipulation of (2.18) using the continuity and hydrostatic equations, the mass-

weighted kinetic energy equation can be written as 
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where a is the specific volume and ω = Dp/Dt the vertical velocity in p-coordinate. We 

see from (2.19) that the local kinetic energy is changed through the total energy fluxes 

that cross the domain boundaries and the conversion of available potential energy. The 

external forces generate additional work which will dissipate (or generate) the kinetic 

energy. 

The thermodynamic energy equation can be written in a flux form by using the mass 

continuity equation (2.11). This gives 

(2.20) 

where Q = Tṡ is the diabatic heating. The addition of (2.19) and (2.20) results in the 

cancellation of the conversion term σαω and leads to a total energy equation 

(2.21) 

Again we treat the lower boundary by using the massless layer approach when the isen-

tropes intercept by the earth's surface. Assuming the top boundary is both an isentropic 

and isobaric surface, assuming no topography and vanising ṡ at the top and bottom, we 

perform the same integrations as we did for the angular momentum equation, which results 

in 

(2.22) 

Thus, in the absence of the external forcing, the vertically and azimuthaly integrated total 

energy is a conserved quantity. 

c. The vorticity, potential vorticity and potential pseudodensity equations 

To derive the vorticity equation, we first rewrite the momentum equations (2.8) and 

(2.9) in their rotational forms 

(2.23) 

(2.24) 
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where Ϛ is the vertical component of the vorticity vector. Taking - ∂ ( ) / r∂φ of (2.23) and 

∂r( ) / r∂ r of (2.24), then adding the results, we obtain 

where 

(2.25) 

(2.26) 

is the absolute vorticity vector. Equation (2.26) gives the isentropic form of the vorticity 

equation, which indicates that the Lagrangian time rate of change of the vertical compo-

nent of vorticity is related to the horizontal divergence or convergence of the flow field, the 

twisting of the horizontal vorticity to the vertical and the curl of the horizontal external 

forcing. This equation can also be written in flux form 

(2.27) 

where P = Ϛ/σ is the potential vorticity. In deriving (2.27) from (2.25), we have used the 

fact that the divergence of the curl of any vector field identically vanishes, i.e., 

(2.28) 

Equation (2.27) is the equivalent form of the Haynes-McIntyre theorem (Haynes and Mcln-

tyre, 1987) in cylindrical coordinates. It states that the potential vorticity can not be 

transported across any isentropic surface because the component of flux normal to any 

isentrope is identically zero. In this sense, an isentropic surface is impermeable to potential 

vorticity. Another important concept following logically from (2.27) is that since there is 

no any other apparent source that can generate potential vorticity besides the horizontal 

PV transports: potential vorticity can neither be created nor destroyed within a layer 

bounded by two isentropic surfaces. Therefore, in order for the mass-weighted potential 

vorticity to remain unchanged, the potential vorticity must be redistributed within two 

isentropic surfaces as mass flows in and out. Note that the above theorem holds regard-

less of whether or not diabatic heating and frictional or other forces are included in the 

dynamic system. 
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The Rossby-Ertel potential vorticity principle is obtained by eliminating the horizon-

tal divergence between (2.25) and (2.11), which yields 

(2.29) 

Equation (2.29) indicates that the time evolution and the spatial distribution of potential 

vorticity can be calculated from the Lagrangian history of the diabatic heating and the 

frictional processes. In the absence of the diabatic heating and frictional forces potential 

vorticity acts as a materially conserved dynamic tracer. 

In balanced dynamics, which is the main theme of this study, it turns out that the 

reciprocal of the Rossby-Ertel potential vorticity is a more amenable quantity to use. Let 

us define this reciprocal of potential vorticity σ* = ƒ / P as the potential pseudodensity. 

It is so named because when substituting the definition of P, we have 

(2.30) 

i.e., the potential pseudodensity is the pseudodensity (in the entropy coordinate) that an 

air parcel would have if its shape were changed in such a way that its vertical component of 

absolute vorticity took the value of the earth's vorticity. The substitution of this definition 

into (2.29) leads to the potential pseudodensity equation 

(2.31) 

which, in this case (ƒ-plane), retains the same conservative property as that of the potential 

vorticity equation, i.e., the potential pseudodensity can also be treated as a materially 

conserved quantity when the diabatic heating and frictional forces are neglected. 

2.2 The mixed geostrophic-gradient balance theory 

We now begin to develop a three-dimensional balanced vortex theory. This theory 

generalizes Eliassen's axisymmetric balanced equations by considering the transient de-

velopment of gradient balanced states. It can also be considered as a generalization of the 

semigeostrophic equations by inclusion of flow curvature. The following three subsections 

construct the first part of the theoretical framework. We first conduct a small Rossby 
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number analysis, and through this analysis we demonstrate how the primitive system 

(2.8)-(2.12) can be approximated by a set of the geostrophic-gradient balanced equations. 

We then derive a set of conservation laws associated with these equations in order to show 

that the approximated system is physically valid. 

2.2.1 The small Rossby number analysis 

Following Hoskins (1975), we consider a frictionless motion whose horizontal pro-

jection is expressed in a natural coordinate system. The components of the momentum 

equation tangential (r) and normal (n) to the direction of the motion are 

(2.32) 

(2.33) 

where r is the local radius of curvature, the momentum vector is v = (V,0), and the 

total acceleration vector is Dv/Dt = (DV/Dt, V 2 / r ) , which is composed of both inertial 

acceleration DV/Dt and the noninertial acceleration V2/r. (Note: the inertial forces are 

defined differently in atmospheric science and in physics. In physics, the inertial force is 

defined as any force that results from relative motion. Under this definition, the Coriolis 

force and the centrifugal force are inertial forces.) 

In contrast to Hoskins (1975) in which the author defined a generalized small Rossby 

number by 

and imposed the somewhat stringent requirement that both the inertial and noninertial 

accelerations are bounded by such smallness, i.e., 

and 
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we consider a broader class of motions in which r can be small, i.e., the flow may be highly 

curved. This relaxation implies a reasonable redefinition of the generalized small Rossby 

number to be 

(2.34) 

(2.35) 

so that 

by taking account of (2.32) and (2.33) simultaneously. Note that the condition (2.35) 

differs from that of Hoskins (1975) (Eq. 8) in that the curvature effect comes into the 

balance relation [on the left hand side of (2.35)], and therefore the approximate equal sign 

in Hoskins' condition is now replaced by the exact equal sign in (2.35). 

In fact, from the analysis of Hoskins (1975), two kinds of Rossby numbers were 

revealed in his generalized definition. The one commonly defined in meteorology and fluid 

mechanics is given in (2.34), which measures the relative importance of the inertial and 

Coriolis forces. The smallness of this Rossby number implies certain types of fluid motions 

with combined time and length scales characteristic of balanced adjustment processes 

[Note here that we are avoiding use the term "geostrophic adjustment" with the intention 

of not precluding more accurate adjustment processes such as gradient adjustment or even 

higher order adjustment. The same usage of this type of terminology has been found in 

Mclntyre and Norton (1991).] are occuring and the gravity-inertia oscillations are not 

shaping the flow pattern significantly. 

The second Rossby number may be called the curvature Rossby number because it 

can be written in the form 

which is the measure of the relative importance of the centrifugal force due to flow curva-

ture versus the Coriolis force. In general, the smallness of this curvature Rossby number 

means the flow is not highly curved. It seems reasonable that in many physical situations 

large curvature Rossby number will not prevent the realization of balanced states. 
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The condition (2.34), or (2.35), is frequently met in many physical situations. For 

example, in a hurricane the tangential particle acceleration may be trivial while the sub-

stantial Coriolis turning is balanced by the centripetal acceleration and the radial pressure 

gradient force. 

Since DV/Dt is small in comparison with the Coriolis force, so is ∂φ/∂r then, com-

pared to each term in (2.33), we may regard the momentum vector (V, 0) is approximately 

balanced by the gradient momentum in the tangential direction and by the geostrophic 

momentum in the radial direction, i.e., 

This generalizes the geostrophic momentum approximation of the Eliassen type (Eliassen, 

1948; Hoskins, 1975) to the geostrophic-gradient momentum approximation. The latter 

can treat more general flows with substantial curvature, as opposed to the former that 

strictly confines its applications to the quasi-straight flows, such as fronts or jets. 

The above modification of Hoskins' scaling argument may be closely related to the 

anisotropic nature of fluid motions in the sense that the curvature effect can be completely 

depicted by one component of the flow field. The analysis, therefore, is reasonably two-

parameter, both the Rossby number and the curvature Rossby number. Multi-scale, multi-

parameter analysis procedures were also presented by McWilliams and Gent (1980), who 

used both the Rossby number and a frontal structure parameter, and by Allen (1991) who 

used both the Rossby number and a bottom topography parameter in order to arrive at 

the balanced equations for different applications. 

While the natural coordinate system is helpful to illustrate basic ideas, the above 

argument may not be limited to a certain coordinate system. This approximation should 

be applicable to any curvilinear flow system. In fact, as we will see, we are going to apply 

this approximation to a curvilinear cylindrical coordinate system in the current chapter, 

and to a curvilinear spherical coordinate system in Chapter 3. 

(2.36) 
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2.2.2 The governing equations with the geostrophic-gradient momentum ap-
proximation 

Making use of the geostrophic-gradient approximation from the analysis of the small 

Rossby number above, we can write the set of approximated primitive equations expressed 

in the cylindrical and entropy coordinates (r, φ, s) as 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

where, for simplicity, the external body forces have been neglected, and most of the nota-

tions have been defined previously. Even so, we would like to reemphasize that 

(2.41) 

is the total derivative, and (u, v) the total radial and tangential components of the velocity, 

while ug the geostrophic radial wind defined by 

(2.42) 

and vg the gradient tangential wind, i.e., 

(2.43) 

Note that R is different from r and is the potential radius, which will be defined later. 

The parameter ϒ is naturally brought into existence mathematically due to the geostrophic 

modification of total momentum in a curvilinear system in (2.37). It can be regarded as a 

parameter which measures the relative importance of the curvature vorticity with respect 

to ƒ. This can be understood from its definition: 

(2.44) 
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When the curvature vorticity is small compared with ƒ, R reduces to r [ref. (2.55)] 

and ϒ = 1 . Then the whole system reduces to the semigeostrophic set of equations. If 

we further replace (ug,vg) by their full counterparts (u,v), (2.34)-(2.37) revert to the 

primitive equations. It will be shown later that the canonical transformations of the new 

balanced equations (2.37)-(2.43) are crucially dependent upon appearance of this 7 factor 

in the dynamical system. 

Careful examination of ϒ as the function of the curvature vorticity, by substituting 

the formula for R presented in (2.55) of the next section, gives 

(2.45) 

where Roc is the curvature Rossby number, which has been previously defined as 

Figure 2.1 shows 7 as a function of curvature vorticity normalized by the earth's vorticity 

ƒ (i.e., the curvature Rossby number). When curvature vorticity is absent in the flow field 

(Roc = 0), ϒ = 1. Note that there is considerable departure of ϒ from its quasi-straight 

flow value (ϒ = 1) described by semigeostrophic equations as the absolute value of the 

curvature vorticity increases. There is a run-away effect for ϒ as the vortex spins up. 

For example, the value of ϒ is increased 16% when vg/r = ƒ, 34% when vg/r = 2ƒ and 

140% when vg/r = 10 ƒ. In fully a developed hurricane, the curvature vorticity frequently 

exceeds 10ƒ (Hawkins and Imbembo, 1976; Sheets, 1980). It is also found that there is a 

cut-off value of vg/r = -1/2ƒ for anticyclonic flows, in which case ϒ —> 00 and this theory 

breaks down, which may be related to inertial instability of the flow. 

Since the total momentum in the Lagrangian acceleration and curvature terms is 

approximated either by the geostrophic or by the gradient wind, we shall henceforth 

refer to (2.37)-(2.43) as the mixed-balance system. By the "balanced system" we mean 

that due to the balanced assumptions (2.42) and (2.43), the space constituted by the 

linear eigenmodes of this system has been shrunk to the subspace comprised only by 

the slow manifold. In other words, the approximated system no longer permits transient 
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Figure 2.1: ϒ plotted as the function of the curvature vorticity (curvature Rossby number). 
Semigeostrophic and quasi-geostrophic theories are only valid at ϒ=1. 
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gravitational modes as part of its possible solutions. Together with the equation of the 

state, (2.37)-(2.43) form a closed system, i.e., there are seven equations for seven unknowns 

u, v, ug, vg, M, T and σ (the formula that defines the potential radius will be given in 

the next section). Note that ug and vg are diagnosed from M through (2.42) and (2.43), 

and M is related to σ (although the relation is not so obvious at this point, we will prove 

later in section 2.5 that such an invertibility principle does exist in transformed space), 

while σ is already predicted by (2.40). Therefore, (2.37) and (2.38) are not independent 

predictors. In this regard, only one prognostic equation is left, i.e.,, the system has only 

one class of eigenfrequencies. 

2.2.3 The conservation principles 

The above mixed geostrophic and gradient balanced system preserves the following 

physical laws: 

a. Angular momentum conservation 

We define the absolute gradient angular momentum as 

mg = rvg + 1/2ƒr2 . (2.46) 

On taking the material derivative of (2.46) and using (2.38), we indeed have the angular 

momentum principle 

(2.47) 

When an axisymmetric flow is considered, the angular momentum mg becomes a materially 

conserved quantity. Such a conservation principle implies that there must exist a cyclic 

coordinate that can be used to transform the momentum equation into a canonical form. 

In fact, as we will discuss later, mg = 1 / 2 f R 2 defines the potential radius. 

Using the continuity equation, (2.47) can be written in the flux form 

(2.48) 

By applying the massless layer approach, we may integrate this equation both vertically 

and azimuthaly to obtain 

(2.49) 
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which is the approximate form of the integrated angular momentum conservation principle 

(2.16) in the sense that the total angular momentum is now replaced by the gradient 

angular momentum. 

b. Energy conservation 

Adding ug times (2.37) and vg times (2.38), the kinetic energy equation becomes 

(2.50) 

where Kg = 1/2u2
g + v2

g) is the combined geostrophic-gradient kinetic energy. Following the 

same procedures as for the primitive system of equations, we can write this equation in 

the flux form 

(2.51) 

The thermodynamic energy equation can be written, after using the mass continuity equa-

tion (2.40), in the form 

(2.52) 

where α, ω and Q are all defined in the same way as they were in (2.19) and (2.20). Again, 

the addition of (2.51) and (2.52) results in the cancellation of the conversion term σαω 

and leads to a total energy equation 

(2.53) 

Assuming the top boundary is both an isentropic and isobaric surface, assuming no to-

pography and vanising ṡ at the top and bottom, we integrate the total energy equation to 

obtain 

(2.54) 

where we have taken into account cases when the lower isentropes terminate at the earth's 

surface by adopting the massless layer approach. In comparing (2.54) with (2.22), we 
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see that, except for the fact that the kinetic energy is evaluated using ug and vg, the 

approximated governing equations (2.37)-(2.41) have a total energy conservation principle 

identical to the one which exists for the primitive equations. 

We will delay the derivations of the vorticity and the potential vorticity equations 

until section 2.4 after a discussion of the coordinate transformation. 

2.3 The combined geostrophic azimuth, potential radius and entropy coordi-
nate transformations 

As discussed in the previous section, the implementation of mixed geostrophic and 

gradient momentum approximations in the primitive equations leads to a set of balanced 

equations in which three prognostic equations have been reduced to one. Although this 

balanced system is closed, it is not a mathematically convenient set to work with, and 

some kind of reformulation procedure is necessary. This is exactly the same situation as in 

semigeostrophic theory. Semigeostrophic theory has been pushed into a viable position due 

to two devices (Hoskins, 1975): (1) the geostrophic approximations; (2) the geostrophic 

coordinate transformations. Through the latter, the geostrophically approximated equa-

tions of the Eliassen type may systematically be transformed to their canonical forms, and 

the further use of these canonical equations makes the ageostrophic part of the total wind 

implicit in the coordinate transformation. Hence, the system of equations reduces to an 

amenable mathematical formulation: one predictive equation for potential vorticity and 

one diagnostic invertibility principle to obtain the balanced wind and mass fields. This 

methodology is also valid in the axisymmetric vortex model [Shutts and Thorpe (1978) 

and Schubert and Hack (1983)] where another type of quasi-Lagrangian coordinate, the 

so-called potential radius, is used. Another issue concerns the duality between the use 

of the geostrophic coordinates in the horizontal and the isentropic coordinate in the ver-

tical. This duality was first pointed out by Hoskins and Draghici (1977), and has been 

further discussed by Gill (1981) and Heckley and Hoskins (1982). The possibility of the 

combined use of geostrophic and isentropic coordinates has been discussed theoretically 

by McWilliams and Gent (1980). Buzzi et al. (1981) studied the two dimensional inter-

nal frontogenesis problem by simultaneously using the geostrophic coordinates and the 
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isentropic coordinate. This approach has been extended to the three dimensional semi-

geostrophic system on the ƒ-plane (Schubert et al., 1989), β-plane (Magnusdottir and 

Schubert, 1990) and hemisphere (Magnusdottir and Schubert, 1991). Here it is logical 

for us to combine the geostrophic coordinate, potential radius and entropy as one set of 

quasi-Lagrangian coordinates to transform our mixed geostrophic and gradient balanced 

system. 

The fact that the mixed balance system preserves the absolute angular momentum 

provides us the choice of a new coordinate, the potential radius, as the replacement of the 

physical radius. It is defined by 

i.e., the potential radius R is the radius to which an air particle must be moved (conserving 

its absolute angular momentum) in order for its relative angular momentum to vanish 

(Schubert and Hack, 1983). 

Since we assumed that the radial momentum is in geostrophic balance, it is natural 

to introduce the geostrophic azimuth, that is, the azimuth air particles would have if they 

were moved with their geostrophic angular velocity at every instant. Mathematically, this 

relation can be written 

Combining the potential radius and geostrophic azimuth as two new coordinates, (2.37)-

(2.38) can be so transformed that the horizontal ageostrophic winds become completely 

implicit. In addition, let us define S = s and T = t, but noting that ∂ /∂s and ∂/∂t imply 

fixed r, φ while ∂/∂S and ∂/∂T imply fixed R, Φ. With these newly defined coordinates, 

we can now proceed to transform our balanced system (2.37)-(2.40) from (r, φ, s, f) space 

to (R, φ, S, T) space. The derivative relations in the two spaces are given by 

1/2ƒR2 = rvg + 1/2ƒr2, (2.55) 

(2.56) 

(2.57) 

(2.58) 
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Applying this set to the Bernoulli function M* = M + 1/2(u2
g+ v2

g), we can prove that 

where 

(2.59) 

(2.60) 

(2.61) 

The transformation relations (2.57)-(2.60) also imply that the total derivative (2.41) can 

be written as 

(2.62) 

(2.63) 

is the vector velocity in transformed space, with ṡ = S. 

With the aid of (2.61) we can now show that (2.37) and (2.38) take the canonical 

forms (the detailed proof is given in Appendix A) 

(2.64) 

(2.65) 

It is interesting to note that the horizontal advective winds in the Lagrangian time deriva-

tive (2.62) are related to the Bernoulli function in such a way that they are formally in 

geostrophic balance. These advecting velocities are solely determined by geostrophic and 

gradient winds in physical space through (2.61), (2.42) and (2.43). Therefore, the major 

advantages of the coordinate transformation from ( r ,φ , s , t ) space to (P , Φ, S, T) space 

are that the two momentum equations are reduced to their canonical forms and the sub-

stitutions of these canonical equations into (2.62) result in the absence of ageostrophic 

advection. In addition, for adiabatic motions the vertical advection does not appear in 

(2.62), so that the predicted motions becoming quasi-horizontal in such a coordinate space. 
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2.4 Vorticity, potential vorticity and potential pseudodensity equations 

In the nondivergent, barotropic atmosphere, the flow can be described entirely in 

terms of the vorticity field (Rossby, 1939 ; Hoskins et al., 1 9 8 5 ) . As a matter of fact, in 

such an idealized model the dynamics and the thermodynamics are decoupled so that 

the vorticity field recovers all the relevant information regarding the fluid motion. In 

a more realistic stratified, divergent, baroclinic atmosphere, however, both the dynamic 

and thermodynamic aspects are indispensable in determining fluid motion. In this case, a 

more general dynamic tracer and predictive equation are needed. Such a succinct dynamic 

statement is given by the Rossby-Ertel potential vorticity principle (Rossby, 1940; Ertel, 

1 9 4 2 ) . In the primitive system, the significance of this principle lies merely in that it 

provides an additional conservation law for the third Lagrangian marker necessary to 

identify an air parcel, and since the mass and wind fields are explicitly predictive quantities 

in the primitive equations, potential vorticity is not an essential concept understanding 

dynamic processes. For the balanced system, however, there is another important principle 

accompaning the potential vorticity principle, i.e., the invertibility principle (Hoskins et 

al., 1 9 8 5 ) . The two principles work co-operatively in such a way that the potential vorticity 

principle can be used as the fundamental prognostic equation and the invertibility principle 

as the fundamental diagnostic equation. While the invertibility principle is the subject of 

the next section, we discuss the potential vorticity principle associated with our mixed-

balance system in the current section. The two-fold purpose in presenting the potential 

vorticity principle here is that it serves as the fundamental prognostic equation, and at 

the same time, it concludes the conservation argument begun in section 2.2. 

We first discuss the vorticity equation associated with our mixed-balance system. The 

simplest way to derive the vorticity equation is to combine the derivative of (2.64) and 

(2.65) in such a way as to form the total derivative of f∂(1/2R2, Φ)/∂(1/2r2, φ), i.e., to form 

(1/2R2)1/2r
2 [ ( 2 . 6 4 ) / R ] φ - Φφ [ ( 2 . 6 5 ) R ] 1 / 2 r

2 - (1/2R2)φ[(2.64)/ R]1/2r 2 + Φ1/2R 2 [ ( 2 . 6 5 ) R ] φ . In doing 

so, we obtain (see details in Appendix B) 

(2.66) 
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(2.70) 

where 

(2.67) 

is the vector vorticity associated with the geostrophic and gradient winds. If we define 

Pg = Ϛ g / σ as the balanced version of Rossby-Ertel potential vorticity, (2.66) can be written 

in the flux form 

(2.68) 

(2.69) 

by virtue of the vector identity 

Equation (2.68) is the balanced version of (2.27). Thus, the Haynes-McIntyre theorem is 

naturally preserved in our mixed balanced system. 

Before we derive the potential vorticity principle, we would like first to show the 

following useful relations. From (2.58)-(2.59) we may have 

In making use of (2.70) and (2.71) in (2.60) we can prove that 

(2.71) 

(2.72) 

This relation shows that ∂/∂S is actually the derivative along the vorticity vector, and 

that is why we sometimes refer to (R, Φ ,S ,T) as "vortex coordinates". 

The potential vorticity equation is derived by combining the vorticity equation (2.66) 

and the continuity equation (2.40). The result is 

(2.73) 

where P s = Ϛg /σ is the combined geostrophic-gradient balanced potential vorticity. Equa-

tion (2.73) states that the potential vorticity is a conserved quantity following fluid parti-

cles when diabatic heating is absent (ṡ = 0). This statement, of course, is the generaliza-

tion of Ertel's theorem for the 3-D balanced vortex model. 
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We next derive the equation for the inverse of the potential vorticity, i.e., the potential 

pseudodensity equation. The advantage of using potential pseudodensity as the primary 

prognostic quantity has been pointed out before, and will be seen more clearly in the next 

section. In an analogous way to the discussion of the primitive equations, let us define the 

potential pseudodensity as 

(2.74) 

so that the potential vorticity Pg and the potential pseudodensity σ*g are related by Pgσ*g = 

ƒ. On substituting this definition into (2.73), we obtain 

(2.75) 

When the diabatic heating is absent, potential pseudodensity is also materially conserved. 

By using (2.62)-(2.63), we can write the potential pseudodensity equation in the flux form 

(2.76) 

where U and V in the horizontal flux terms are given in (2.63) and are related to the 

single variable M* through (2.64) and (2.65). S = ṡ is the diabatic heating, which is 

either specified or given by some kind of parameterization. Thus, the integration of (2.76) 

forward in time requires only the initial σ*g field and the history of the diabatic heating 

provided that M* is somehow obtainable, which is the topic of the next section. 

2,5 Invertibility principle 

In order to complete the predictive cycle, we shall next search for a diagnostic equation 

which can invert the predicted σ*g to yield the basic diagnostic variable M*. We begin 

with the definition of σ*g (2.74), which can be written as 

(2.77) 

by noting (2.67). Applying (2.60) to 1/2r2 and φ respectively, and combining the two 

resultant equations to yield the two relations 

(2.78) 
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(2.79) 

we then substitute (2.78) and (2.79) in the expansion of the first term in (2.77) to obtain 

which leads to the invertibility principle in the Jacobian form 

(2.80) 

where now r, φ, p and σ*g are all expressed as dependent variables in (R, Φ, 5, T) space. 

This is the essential advantage of using the potential pseudodensity as the fundamental 

predictive quantity. 

We notice that the additional term in the first entry of (2.61) presents a small correc-

tion to the mixed geostrophic and gradient balanced flow in an asymmetric vortex. This 

can be easily seen by comparing this term to the term on the left hand side of (2.61), i.e., 

(2.81) 

for a cyclonic vortex. This quantity should be very small compared to unity for most vortex 

circulations such as hurricanes, where the tangential wind can be one order of magnitude 

larger than the radial wind so that the numerator is approximately 200 times smaller than 

the denominator. For this reason this small additional term can be dropped, which results 

in the geostrophic, gradient and hydrostatic balanced relations in the transformed space 

taking the forms 

(2.82) 

Using this set of relations in the geostrophic azimuth coordinate (2.56), potential radius 

(2.55) and the ideal gas law, we can write r , φ and p all in terms of M* as 
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(2.83) 

(2.84) 

(2.85) 

where R is the gas constant. On substituting (2.83)-(2.85) into (2.80), the invertibility 

principle can be rewritten as 

(2.86a) 

This is the basic diagnostic equation we are seeking; it determines M* from the known 

σ*g field at each time step. This equation, known as a Monge-Ampere equation of elliptic 

type, has been extensively studied in the mathematics community both for its generalized 

solution and the existence of the unique solution [e.g., Pogorelov (1964), Bakelman (1957, 

1958a, 1958b), Courant and Hilbert (1966)]. Equation (2.86a) presents a three dimensional 

form of the Monge-Ampere equation instead of the two dimensional one in the studies 

mentioned above. In this sense, we are dealing with a more complicated problem here. 

However, we conjecture that there is no substantive change of the problem in going from 

two dimensions to three dimensions. 

Note that when we expand the determinant in this equation, it will present a three 

dimensional, second order, nonlinear elliptic type of partial differential equation. To inte-

grate this equation six boundary conditions are required. The vertical boundary conditions 

can be derived in a similar fashion as that in Schubert et a1. (1989). By neglecting the 

effects of topography and assuming that the lower boundary is the constant height surface 
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z = 0 and the isentropic surface, we conclude that M = cpT at S = SB. Written in terms 

of M* , this lower boundary condition becomes 

The upper boundary is assumed to be an isentropic and isobaric surface, and hence also an 

isothermal one. Directly applying the hydrostatic equation to this surface, we can write 

the upper boundary condition for (2.86a) as 

where TT is the constant temperature at the top layer of the model domain. In practice, 

this upper boundary should be chosen high enough so that it will not affect the interesting 

physical processes inside the model domain. It is interesting to note that the vertical 

boundary conditions in this model are almost identical to those in the semigeostrophic 

theory (Schubert et al., 1989; Magnusdottir and Schubert, 1991), despite the different 

balance assumptions employed. 

Since we are developing a vortex model, we may use the periodic boundary conditions 

both in M* and the derivative of M* in azimuthal direction. 

We next consider the inner radial boundary at R = 0. According to (2.82), in order 

for the tangential wind not to become singular at this point, either r or ∂M*/∂R must be 

zero. But the asymmetry of the vortex requires r ≠ 0 at R = 0, then it must be 

As for the outer radial boundary condition, we wish to impose a condition at finite R = RL 

which simulates the far field motion, in the sense that the influence of localized forcing 

nearly disappears as RL becomes large. This allows one to impose a Dirichlet boundary 

condition 

(2.86c) 

(2.86d) 

M* = Ψ ( S ) at R = RL, (2.86e) 

by integrating the hydrostatic equation so that Ψ ( S ) is given by 

(2.87) 
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where TB is the temperature field at the bottom layer of the model domain, p the undis-

turbed pressure profile and k = R/cp. The quantities with "0" subscript denote surface 

reference values. Given the basic state pressure as the function of the vertical coordinate, 

the above integral can be obtained either analytically or numerically. In this sense the 

Dirichlet boundary condition at R = RL is specified. 

• Summary of the mixed geostrophic-gradient balanced vortex model 

We have now completed our derivation of a mathematical model which filters transient 

gravity waves, and is able to describe three dimensional circular flows. The model consists 

of two fundamental equations: one prognostic equation (2.76) and one diagnostic equation 

(2.80) or (2.86). The predictive variable is the potential pseudodensity from which both 

the mass and wind fields are retrieved by using the invertibility principle. The summary 

of this balanced model is listed in Table 2.1. 

2.6 Axisymmetric dynamics 

In this section, we demonstrate that the Eliassen balanced vortex model (Eliassen, 

1952) and the transformed Eliassen balanced vortex theory for an idealized axisymmetric 

flow (Shutts and Thorpe, 1978; Schubert and Hack, 1983; Schubert and Alworth, 1987) 

are, in fact, the two dimensional special cases of our mixed geostrophic gradient balanced 

theory discussed in this chapter. This result suggests that the theory presented so far is 

consistent with Eliassen's model. 

We begin first by imposing the axisymmetry assumption in our generalized three 

dimensional model, that is, letting all terms involving ∂ /∂φ (or ∂ /∂Φ in the transformed 

space) be zero, except for the term ∂Φ/∂φ being unity. In doing so, from (2.42), (2.43) 

and (2.37), we deduce that 

ug = 0, u = ua, (2.88) 

va = 0, v = vg, (2.89) 

which indicate that the radial wind becomes the pure ageostrophic wind, while the az-

imuthal wind is purely in gradient balance. This is precisely the view of the dynamic 
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Table 2.1: Summary of the mixed geostrophic-gradient balanced vortex model. 

(T2.1) 

(T2.2) 

(T2.3) 

(T2.4) 

(T2.5) 

(T2.6) 
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configuration by the axisymmetric balanced vortex theory. With use of (2.88) and (2.89) 

the set of governing equations (2.37)-(2.41) is reduced to 

where the total derivative now becomes 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

These are the s-coordinate versions of Eliassen's balanced vortex equations. 

In the transformed space, again, let us impose that ∂ /∂Φ = 0 in the system of (T2.1)-

(T2.6). The fundamental predictive equation, i.e., the potential pseudodensity equation 

(T2.1) is reduced to the simple form 

(2.95) 

which is identical to the axisymmetric potential pseudodensity equation obtained by Schu-

bert and Alworth (1987, Eq. 26) when the external forces are neglected. The simplicity 

of this equation lies not only in its form, but also in the computational procedure because 

prediction of the future σ* field is completely decoupled from the diagnostic operation 

if the diabatic heating is explicitly given. Furthermore, this equation can be integrated 

analytically by adopting the method of characteristics, as shown in Schubert and Alworth 

(1987). 

The reduction of the 3 X 3 determinant to a 2 X 2 one is immediately seen when the 

axisymmetric condition is applied in (T2.2): 

(2.96) 
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Substitution of the function Γ(M*) in (2.96) and expansion of the determinant gives 

(2.97a) 

(2.97b) 

(2.97c) 

(2.97d) 

(2.97e) 

with the set of associated boundary conditions 

where ψ(S) has been defined previously. Together (2.97a)-(2.97e) constitute a 2-D inver-

sion operator which is the s-version of the invertibility principle presented in Schubert and 

Alworth (1987) [Eqs. (29a)- (29e)]. 



Chapter 3 

THE MIXED-BALANCE THEORY ON THE SPHERE 

In this chapter, a three dimentional mixed geostrophic and gradient (zonal) balanced 

theory on the sphere will be derived. This theory is analogous to the three dimensional 

Eliassen balanced vortex theory and is a generalization of the ƒ-plane theory to full spheri-

cal geometry. Therefore the section plan in this chapter will proceed in a similar fashion to 

that of the last chapter. In section 3.1, we review some of the basics of the primitive equa-

tions in spherical coordinates. Beginning with section 3.2 we will derive a mixed-balance 

system and the conservation laws associated with the approximated system. Section 3.3 

deals with the transformation of the balanced system by a set of combined geostrophic, 

potential latitude and entropy coordinates. In section 3.4, the vorticity, potential vorticity 

and potential pseudodensity equations associated with the new balanced system will be 

derived. The last equation turns out to be the fundamental predictive equation for the 

balanced system. The invertibility principle is discussed in section 3.5. In the final section, 

section 3.6, we will show how the zonally symmetric balanced theory (Hack et a1., 1989; 

Schubert et al., 1991) falls into our generalized theory as a two dimensional special case. 

3.1 The primitive equations 

Let us begin with the Newtonian momentum equation in its vector form: 

(3.1) 

where u = (u, v, w) is the three dimensional velocity, k the unit vector in the vertical 

direction, and F the frictional and other external body forces. Also note that we have 

adopted the traditional approximation (Phillips, 1966) so that ƒ = 2Ωsinφ is twice the 

vertical component of the earth's rotation, which is a function of latitude. 
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where 

is the total derivative, M = cpT + gz the Montgomery potential, σ = —∂p/∂s the pseu-

dodensity in s-space. Note that (3.9), the continuity equation, has been added to the 

system. Since entropy is used as the vertical coordinate, the thermodynamic equation 

Since we are attempting to develop a theory that can describe the large scale fluid 

motions on the globe, the set of spherical coordinates (λ,φ, z) with A being the longitude, 

φ the latitude and z the vertical altitude, is most appropriate for such a discussion. The 

gradient vector in this coordinate system is 

(3.2) 

Thus, (3.1) can be decomposed into three component equations in the spherical coordinate 

system 

(3.3) 

(3.4) 

(3.5) 

where now (u,v,w) stand for the zonal, meridional and vertical winds respectively. 

Following the discussions in Chapter 2, we now introduce the hydrostatic approxi-

mation into our dynamic system, and choose s = cp ln(θ/θ0), the specific entropy, as the 

vertical coordinate. This, of course, leads to the set of primitive equations expressed in 

the spherical and entropy coordinate system (λ,φ, s), 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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is implicit in the coordinate system. While the frictional force and diabatic heating are 

either specified or given by some parameterization scheme, together with the equation of 

state, (3.6)-(3.9) form a closed system, namely the five equations are to be used to solve 

for the five unknowns u, v, M, T and σ with the independent variables λ, φ and s, given 

the proper initial and boundary conditions. 

3.1.1 The conservation principles 

We next discuss the conservation principles associated with the primitive equations 

in spherical coordinates. The purpose of this discussion is to set up a parallel comparison 

with the balanced system that we are going to develop in the next section. 

a. Angular momentum conservation 

The absolute angular momentum in spherical coordinates is commonly defined as 

m = α cos φ(u + Ωα cos φ). (3.11) 

On taking the material derivative of (3.11) and using (3.6), the absolute angular momen-

tum principle is obtained in the form, 

(3.12) 

When a zonally-symmetric flow is considered, the absolute angular momentum is a mate-

rially conserved quantity. This equation can be written in a flux form 

(3.13) 

by using the continuity equation (3.9). We can integrate (3.13) zonally at a certain lati-

tude by imposing the periodic boundary condition from λ to λ + 2π. Since we are using 

entropy as the vertical coordinate, the problem arises when we integrate the same equa-

tion vertically in the case where isentropes terminate at the earth's surface. If such a 

case occurs, we adopt the massless layer approach proposed by Lorenz (1955) and used by 

many others in many different contexts, e.g., Bretherton (1966), Andrews (1983), Hoskins 

et al. (1985), Magnusdottir and Schubert (1990, 1991) and Fulton and Schubert (1991). 
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We assume that the isentropic surfaces, when terminated at the earth's surface, continu-

ously extend under the surface with pressure equal to surface pressure. There is no mass 

trapped between the isentropes that run under the earth's surface. Let us regard the 

bottom isentropic surface SB as the largest value of s which remains everywhere below the 

earth's surface. We further assume that ṡ vanishes at both the top sT and the bottom sB 

boundaries. Thus (3.13) becomes 

(3.14) 

after integration vertically and zonally. This equation states that the local time rate of 

change of vertically and zonally integrated absolute angular momentum is due to the 

meridional flux of the angular momentum across the latitude boundaries and the genera-

tion (or dissipation) forced by the pressure and frictional torques represented by the two 

terms on the right-hand-side of (3.14). 

b. Energy conservation 

The kinetic energy principle can be obtained by adding u times (3.6) and v times 

(3.7). In doing so, we obtain 

(3.15) 

where K = 1/2(u2 + v2) is the quasi-static form of kinetic energy. Combining this result 

with (3.9) we obtain 

(3.16) 

After manipulation of (3.16) using the continuity and hydrostatic equations, the mass-

weighted kinetic energy equation can be written as 

(3.17) 
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where α is the specific volume and ω = Dp/Dt is the vertical velocity in the p-coordinate. 

We see from (3.17) that the kinetic energy is locally changed through the total energy 

fluxes that cross the domain boundaries and the conversion of available potential energy 

within the model domain. External forces may dissipate kinetic energy by forcing the 

system to do work. 

The thermodynamic energy equation can be written in a flux form by using the mass 

continuity equation (3.9). It yields 

where Q = Ts is the diabatic heating. The addition of (3.17) and (3.18) results in the 

cancellation of the conversion term σαω and leads to the total energy equation 

(3.19) 

Here we clearly see how diabatic heating and external forces enter and affect the dynamic 

system as external physical processes. 

Again we take the same view of the lower boundary as in the massless layer approach 

(Lorenz, 1955; Hoskins et al., 1985; Schubert et al., 1989; Magnusdottir and Schubert, 

1990, 1991) when the isentropes intercept the earth's surface. Regarding the bottom 

isentropic surface sB as the largest value of s which remains everywhere below the earth's 

surface, assuming that the top boundary is both an isentropic and isobaric surface, and 

assuming no topography and vanising ṡ at the top and bottom, we can integrate the total 

energy equation over the whole model domain that is large enough so that any horizontal 

energy flux vanishes at the lateral boundaries. In doing so, we obtain 

(3.20) 

Thus, when external and diabatic processes are neglected, the mass-integrated total energy 

is a globally conserved quantity. 

c. The vorticity, potential vorticity and potential pseudodensity equations 
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To derive the vorticity equation, let us first write the momentum equations (3.6) and 

(3.7) in their rotational forms 

(3.21) 

(3.22) 

where Ϛ is the vertical component of the absolute vorticity. 

Taking -∂cosφ( )/α cosφ∂φ of (3.21) and ∂( )/α cos φ∂λ of (3.22), then adding the 

resulting equations, we obtain 

(3.23) 

(3.24) 

where 

is the absolute vorticity. Equation (3.23) is the isentropic form of the vorticity equa-

tion, which indicates that the Lagrangian time rate of change of the vertical component 

of vorticity is related to the horizontal divergence or convergence of the flow field, the 

twisting of the horizontal vorticity into the vertical and the contributions from all the 

non-conservative forces. This equation can also be written in the flux form 

(3.25) 

where P = Ϛ/σ is the potential vorticity. In deriving (3.25) from (3.23), we have used the 

fact that the divergence of the curl of any vector field identically vanishes, i.e., 

(3.26) 

Equation (3.25) is the Haynes-McIntyre theorem in spherical coordinates. It partially 

elucidates "IPV thinking", whereby mass transport can bring about PV anomalies due 

to diabatic processes. Two very fundamental concepts of potential vorticity have been 

identified from (3.25) by Haynes and McIntyre (1987, 1990). As stated in their theorem, 

due to the disappearance of the component of the flux vector normal to the isentropic 
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surface, the Rossby-Ertel potential vorticity (i) "can not be transported across any isen-

tropic surface," and (ii)"can neither be created nor destroyed within a layer bounded by 

two isentropic surfaces." 

The Rossby-Ertel potential vorticity principle is obtained by eliminating the horizon-

tal divergence between (3.23) and (3.9). The result is 

(3.27) 

which indicates that the time evolution and the spatial distribution of potential vorticity 

can be calculated from the Lagrangian history of the diabatic heating and the other 

external processes. In the case of the advective process dominating diabatic and frictional 

processes, potential vorticity is conserved following the motion of a fluid element. 

We next define the reciprocal of potential vorticity σ* = 2Ω sin φ /P as the potential 

pseudodensity. It is so named because when substituting the definition of P, we have 

(3.28) 

i.e., the potential pseudodensity is the density in the s-space (hence it is referred to as 

pseudodensity) that an air parcel would have if it were moved in such a way that its vertical 

component of absolute vorticity takes the value of the earth's vorticity. The substitution 

of this definition into (3.27) leads to the potential pseudodensity equation 

(3.29) 

(3.30) 

where 

Equation (3.29) should be compared with the potential pseudodensity equation on the ƒ-

plane, which was discussed in Chapter 2, i.e., (2.31), where there is no β-effect. Therefore, 

even for adiabatic and frictionless motion, the materially conservative property of potential 

pseudodensity on the sphere has to yield to β-forcing. Later we will show that for the 

balanced system that we are going to develop next, when transformed by a proper set of 

coordinates, (3.29) can be written in a simple flux form, due to the cancellation of this 

extra β-term. 
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3.2 The mixed balance equations on the sphere 

In this section, we will extend the result obtained in Chapter 2 to the full spherical 

case. That is, we will develop a three dimensional, mixed geostrophic gradient balance 

theory with a latitude dependent Coriolis force in spherical coordinates. 

The small Rossby number analysis conducted in Chapter 2 illuminates the idea that 

the inclusion of flow curvature will not destroy the adjustment process whereby the flow 

tries to evolve toward a balanced state. This implies that balanced dynamics should 

not have problems in some circumstances in dealing with the curved flow. We have 

successfully developed such a balanced theory for circular vortex flows in Chapter 2. For 

flows on the sphere with substantial curvature and asymmetric eddies (e.g., developing 

baroclinic waves, meandering jet streams or blocking patterns) is there a balanced theory 

that can do better than semigeostrophic theory where the curvature effect is completely 

missing? Following the methodology developed in Chapter 2, in the next subsection we 

will directly import in the geostrophic-gradient momentum approximation and show how 

the set of primitive equations can be approximated to a set of balanced equations, and 

then in the following subsection, we derive the set of conservation principles which ensure 

the approximated system is physically reasonable. 

3.2.1 The governing equations with the geostrophic-gradient momentum ap-
proximation 

In line with the geostrophic-gradient momentum approximation deduced from the 

small Rossby number analysis in Chapter 2, we approximate the set of primitive equations 

expressed in the spherical and entropy coordinate system (λ, φ, s) in the form: 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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where, for simplicity, the frictional force has been neglected. We would like to reemphasize 

that 

(3.35) 

is the total derivative, and (u, v) the total zonal and meridional components of the velocity, 

while ug the gradiently balanced zonal wind defined as 

(3.36) 

(3.37) 

(3.38) 

and vg the geostrophically balanced meridional wind, i.e., 

where the Coriolis parameter is redefined as 

Note that Φ, different from φ, is the potential latitude which will be defined later. Al-

though the occurrence of two kinds of latitudes in the same dynamical system seems 

somewhat awkward, it is of benefit when coordinate transformations are introduced in 

the next section. The Coriolis force therefore, under such a definition, is evaluated at the 

transformed latitude, the potential latitude, rather than the physical latitude. Again as in 

Chapter 2, ϒ is a purely mathematically introduced quantity. Nevertheless, it does bear 

some physical meaning since it is written in the form 

(3.39) 

i.e., it measures the ratio of the combined planetary vorticity and relative curvature vor-

ticity to the planetary vorticity itself. In accordance with this, we conjecture that when 

the curvature vorticity is small compared with the planetary vorticity, Φ approximately 

equals φ [see (3.49)], and ϒ ≈ 1. Then the whole system reduces to the semigeostrophic 

equations. If we further replace (ug ,vg) by their full counterparts (u, v), (3.31)-(3.32) 

revert to the primitive equations. 

Since the total winds in the acceleration and curvature terms are approximated by 

geostrophic and gradient winds, we shall henceforth refer to (3.31)-(3.34) as the mixed 
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geostrophic-gradient balance system. Together with the the equation of the state (Note 

that the thermodynamic equation is implicit in the coordinate system), (3.31)-(3.37)form 

a closed system, i.e., there are seven equations for the seven unknowns u, v, ug, vg, M, T 

and σ (the formula that defines the potential latitude will be given in the next section). 

Note that ug and vg are diagnosed from M field through (3.36) and (3.37), and M is 

related to σ (although the relation is not so obvious at this time, we will prove later in 

section 3.5 that in transformed space such a relation is the invertibility principle), while σ 

is predicted by (3.34). Therefore, (3.31) and (3.32) are no longer independent predictors. 

In this regard, only one prognostic equation is needed, i.e., the system has only one class 

of eigenfrequencies. 

3.2.2 The conservation principles 

The above mixed geostrophic and gradient balanced system preserves following phys-

ical laws: 

a. The angular momentum conservation 

We define the absolute gradient angular momentum as 

(3.40) 

On taking the material derivative of (3.40) and using (3.31), the absolute angular momen-

tum principle is easily obtained, 

(3.41) 

For zonally symmetric flow, the second term in this equation disappears, resulting in con-

servation of absolute angular momentum. According to Hamilton's canonical equations, 

this implies that there must exist a corresponding cyclic coordinate that can be used to 

transform the momentum equation into a canonical form. In fact, as we will discuss later, 

mg = Ωa2 cos2 Φ defines the potential latitude. 

Similar to the previous discussion, we can write (3.41) in a flux form 

(3.42) 
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by using the continuity equation. Considering cases when isentropes terminate at the 

ground, and applying the massless layer approach, the integration of (3.42) can be carried 

out both vertically and zonally to yield 

which is the approximate form of the integrated angular momentum conservation principle 

(3.14) in the sense that the total angular momentum is now replaced by the gradient 

angular momentum. 

b. The energy conservation 

Adding ug times (3.31) and vg times (3.32), the kinetic energy equation is obtained 

accordingly 

(3.44) 

where Kg = 1/2(u2
g v2

g) is the combined geostrophic-gradient kinetic energy. Following the 

same procedures as we did for the primitive equation system, we can write this equation 

in a flux form 

(3.45) 

Using the mass continuity equation (3.34), the thermodynamic energy equation can be 

written in the form: 

(3.46) 

Again, the addition of (3.45) and (3.46) results in the cancellation of the conversion term 

σαω and leads to a total energy equation: 

(3.47) 

Assuming the top boundary is both an isentropic and isobaric surface, assuming no 

topography and vanising ṡ at the top and bottom, we can integrate the total energy 
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equation over a model domain that is large enough so that any horizontal energy flux 

vanishes at the lateral boundaries to give 

where we have taken into account of the cases when the lower isentropes terminate at 

the earth's surface by adopting the massless layer approach. In comparison of (3.48) with 

(3.20), we see that, except for the fact that the kinetic energy is evaluated with geostrophic 

and gradient winds, the governing equations (3.31)-(3.34) have a total energy conservation 

principle identical to the one which exists for the primitive equations. 

We will delay the derivations of the vorticity equation and the potential vorticity 

conservation law in section 3.4 after the discussion of the coordinate transformation. 

3.3 The combined geostrophic longitude, potential latitude and entropy co-
ordinate transformation 

Following the formalism of semigeostrophic theory (Hoskins, 1975; Schubert et al. 

1989; Magnusdottir and Schubert, 1990; 1991), it is logical for us to seek a set of new co-

ordinates which allow us to reformulate the problem (3.31)-(3.35) in the quasi-geostrophic 

space. Here the term " quasi-geostrophic space" possesses three meanings: (1) such a space 

is constituted by a set of quasi-geostrophic coordinates (Note: not strict geostrophic ones); 

(2) the governing equations reduce to the quasi-geostrophic formulation, i.e., one prognos-

tic equation and one diagnostic equation; (3) the full advective winds become geostrophic 

(or gradient) and quasi-horizontal for adiabatic motion. As we have pointed out, due 

to the combined geostrophic and gradient momentum approximations, the two horizontal 

momentum equations have forfeited their status as independent predictors. Therefore, our 

goal is to transform (3.31) and (3.32) to their canonical forms, and to combine or replace 

these transformed equations so that they can ultimately form not only a closed but also 

a concise system. For flows on the sphere, these canonical equations are most likely to 

assume exactly the same forms as those derived by Magnusdottir and Schubert (1991) 

[Eq. (2.18) and (2.19)]. Since in this study we have included flow curvature, a different 

(3.48) 
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balance approximation has been used, and the question is just what transformed coor-

dinates are appropriate. One may immediately realize that the questions have partially 

been answered by recalling the derivation of the angular momentum principle in which a 

cyclic coordinate is already implied. As a matter of fact, this cyclic coordinate has been 

discovered and used in the context of two dimensional, zonally symmetric flow on the 

sphere by Hack et al. (1989) and Schubert et al. (1990), where it was called "potential 

latitude". In accordance with the angular momentum principle, let us define this potential 

latitude as Φ to satisfy 

(3.49) 

From this definition we see that the potential latitude Φ is the latitude to which an air 

parcel must be moved (conserving its absolute angular momentum) in order for its relative 

angular momentum to vanish (Hack et al. 1989). It can also be written in the form 

(3.50) 

When φ is approximated by Φ in the second term on the right-hand-side of (3.50), this 

potential latitude formula reduces to the spherical geostrophic coordinate that has been 

used by Magnusdottir and Schubert (1991) in deriving the hemispherical semigeostrophic 

theory. 

We next need to consider the other horizontal coordinate. Since we assumed that the 

meridional momentum is in geostrophic balance, it is natural to introduce the geostrophic 

longitude correspondingly, that is, the longitude fluid particles would have if they were 

moved with their geostrophic velocity at every instant. Mathematically, this coordinate 

can be written as 

(3.51) 

Combining the potential latitude and geostrophic longitude coordinate as two new hori-

zontal coordinates, (3.31)-(3.32) can, presumably, be transformed to their canonical forms, 

and the subsequent use of these canonical equations in the full advective operator makes 

the horizontal ageostrophic winds completely implicit. In consideration of the vertical ad-

vection, we again encounter the duality of using the isentropic coordinate in the vertical 
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and the quasi-geostrophic coordinates in the horizontal. As suggested in the previous dis-

cussion in Chapter 2, we see that the combined use of the isentropic and quasi-geostrophic 

coordinates to construct a full three dimensional space is a feasible approach. Therefore 

we define S = s and T = t as the new vertical and time coordinates, noting that ∂ /∂ s 

and ∂ /∂t imply fixed r, φ while ∂/∂S and ∂ / ∂ T imply fixed R, Φ. With these newly 

defined coordinates, we can now proceed to transform our balanced system (3.31)-(3.34) 

from (λ,φ,s,t) space to (Λ, Φ , S , T ) space. The derivative relations in the two spaces are 

given by 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

Applying this set to the Bernoulli function M* = M + 1/2(u2
g + υ2

g), we can prove the 

following relations 

(3.56) 

The transformation relations (3.52)-(3.55) also imply that the total derivative (3.35) can 

be written as 

(3.57) 

(3.58) 

where 

is the vector velocity in transformed space and ṡ = S. 
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Finally with the aid of (3.56) we can now show that (3.31) and (3.32) take the canon-

ical forms (see appendix A for detailed derivation) 

(3.59) 

(3.60) 

which are exactly the same results as those obtained by Magnusdottir and Schubert (1991). 

It is interesting to note that the horizontal advective winds in the Lagrangian time deriva-

tive in (3.57) are related to the Bernoulli function in such a way that they are formally 

in geostrophic balance. These advecting momenta are solely determined by geostrophic 

and gradient winds in physical space through (3.56), (3.36) and (3.37). Therefore, the 

major advantage of the transformation from (λ,φ, s, t) space to (Λ, Φ,S ,Τ) space is that 

the two momentum equations are reduced to their canonical forms and substitutions of 

these equations result in the absence of ageostrophic advection in (3.57). In addition, for 

adiabatic flow the vertical advection does not appear in (3.57), so that the total advective 

operator becomes quasi-horizontal in such a coordinate space. 

3.4 Vorticity, potential vorticity and potential pseudodensity equations 

The conventional way to derive the vorticity equation is to take the curl of the mo-

mentum equation, namely, to take the cross derivatives of the horizontal momentum 

equations and then to combine them with the hydrostatic approximation. Now that 

the horizontal momentum equations for our mixed-balance, isentropic system have been 

transformed into their canonical forms (3.59) and (3.60), the simplest way to derive the 

vorticity equation associated with this system is to take the cross derivative of (3.59) 

and (3.60) and then to combine them in such a way as to form the total derivative of 

2Ω sin Φ∂(Λ, sin Φ)/(∂λ, sinφ), i.e., to form Λλ[(3.59) cosΦ]sinφ—(sin Φ)sinφ[(3.60)/ cosΦ]λ 

—Λsinφ[(3.59) COS Φ]λ + (sin Φ)λ[(3.60)/COSΦ]SINΦ. In doing so, we obtain (the detailed 

derivation is given in appendix B) 

(3.61) 
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where 

and note the vector identity 

(3.66) 

(3.67) 

(3.68) 

(3.62) 

is the vorticity vector associated with the geostrophic and gradient winds. If we follow 

a traditional definition of potential vorticity (the Rossby-Ertel type) in the isentropic 

coordinate form 

(3.63) 

(3.64) 

(3.65) 

(3.61) can be written in the flux form 

which again leads to the Haynes-McIntyre theorem. 

Before we derive the potential vorticity principle, we would like to show the following 

useful relations. From (3.53)-(3.55) we have 

In making use of (3.66) and (3.67) in (3.55) we can prove that 

This relation shows that ∂/∂S is actually the derivative along the vorticity vector, and 

that is why we sometimes refer to (Λ, Φ, S, T) as "vortex coordinates". 

The potential vorticity equation is derived by combining the vorticity equation (3.61) 

and the continuity equation (3.34). The result is 

(3.69) 
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where 

which gives exactly the same dynamical statement we obtained from the primitive system, 

i.e., potential vorticity is a materially conserved quantity when the advective process 

dominates diabatic and any other dissipative processes (here the external forces have 

already been neglected). 

We next derive an equation for the inverse of potential vorticity, i.e., the potential 

pseudodensity equation. In an analogous way to the discussion of the primitive equations, 

let us define the potential pseudodensity as 

(3.70) 

so that the potential vorticity Pg and the potential pseudodensity σ*g are related by Pgσ*g = 

2ΩsinΦ. On substituting this definition into (3.69), we arrive at 

(3.71) 

(3.72) 

which should be comparable with that in the primitive case. The β-effect serves an addi-

tional forcing for potential pseudodensity apart from diabatic heating. By using (3.57)-

(3.58), we can write the potential pseudodensity equation in a flux form 

(3.73) 

where U and V in the horizontal flux terms are given in (3.58), and they are related to 

a single variable M* through (3.59) and (3.60). Note that S = ṡ is the diabatic heating 

which is either specified or given by some kind of parameterization. Thus, the integration 

of (3.73) forward in time requires only the initial σ*g field and the history of the diabatic 

heating provided that M* is somehow obtainable, which is the topic of the next section. 

3.5 Invertibility principle 

In order to complete the predictive cycle, we shall next search for a diagnostic equation 

which can be used to invert the predicted σ* to the basic diagnostic variable M*. We begin 



64 

with the definition of σ*g (3.70), which can be written as 

(3.74) 

and 

(3.77) 

for westerly zonal flow. If we consider the typical magnitude of the geostrophic wind 

ug ~ vg ~ 10ms - 1 , this ratio is about 1/40 at 30°N, 1/75 at 60°N. These values are 

even overestimated somewhat because, in a normal physical situation, the zonal wind 

dominates the meridional wind by as much as one order of magnitude, specially at middle 

and upper atmospheric levels. For this reason the small additional term can be dropped, 

(3.75) 

(3.76) 

by noting (3.62). Applying (3.55) to λ and sinφ respectively, and combining the two 

resultant equations in such ways as to yield 

we then substitute (3.75) and (3.76) in the expansion of the first term in (3.74) to obtain 

Thus, we can write (3.74) in the Jacobian form 

where now A, sinφ, p and σ* are expressed as dependent variables in (Λ, Φ,S ,Τ) space. 

We notice that the additional term in the second entry of (3.56) presents a small correction 

to the mixed gcostrophically and zonally balanced flow on the sphere. This can be easily 

seen by comparing this term to the term on the left hand side of (3.56), i.e., 
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This is the basic diagnostic equation that we are seeking; it determines M* from known 

σ*g at each time step. Again we arrive at a three dimensional generalized Monge-Ampere 

equation. The uniqueness of the solution to this boundary value problem can be found in 

Pogorelov (1964). When we expand the determinant in this equation, we obtain a three 

dimensional nonlinear elliptic type of equation. Therefore we next discuss the boundary 

conditions that go along with this elliptic differential equation. 

To integrate this three dimensional, second order partial differential equation, six 

boundary conditions are required. The vertical boundary conditions can be derived in a 

which results in the geostrophic, gradient and hydrostatic relations in transformed space 

taking the forms 

(3.78) 

Using this set of relations in the geostrophic longitude (3.51), potential latitude (3.49) and 

the ideal gas law, we can write λ, sin φ and p all in terms of M* as 

(3.79) 

(3.80) 

(3.81) 

where R is the gas constant. We have also used the assumption in (3.80) that the physical 

latitude does not differ substantially from the potential latitude This assumption, however, 

is not indispensable to derive the invertibility principle. On substituting these relations 

in (3.77), we obtain 

(3.82a) 
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similar fashion as that in Schubert et al. (1989). By neglecting the effects of topography 

and assuming that the lower boundary is the constant height surface z = 0 and the 

isentropic surface, we conclude that M = cpT at S = SB- Written in terms of M*, this 

lower boundary condition becomes 

(3.82b) 

Again we have assumed that φ �) Φ in deriving (3.82b) for the sake of the computational 

convenience, although it is not necessary to do so. The upper boundary is assumed to be 

an isentropic and isobaric surface, hence it is also an isothermal one. Directly applying 

the hydrostatic equation to this surface, we can write the upper boundary condition for 

(3.82a) as 

(3.82c) 

where TT is the constant temperature at the top layer of the model domain. This upper 

boundary condition implies that we neglect any interesting physical process occurring at 

the top of the model domain. 

The periodic boundary condition can be assumed when the integration is taken along 

a latitude around the globe, i.e., 

(3.82d) 

The meridional lateral boundary conditions should be chosen on the basis of particular 

application. For example, in studying baroclinic instability, a middle latitude channel 

may be considered. In such a channel bounded by two latitudes, we may assume that the 

meridional component of the geostrophic wind vanishes at the channel boundaries, which 

gives 

(3.82e,f) 

Another example would be the atmospheric motions on hemisphere such as the Rossby 

wave dispersion problem, or the interactions between the tropical atmosphere and higher 

latitudes. In this case, the meridional boundary conditions can be imposed at the equator 

and one of the poles. At any rate, the foregoing dynamical system is complete. 
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One might question how the solution of this system will differ from the one given by 

semigeostrophic theory (Magnusdottir and Schubert, 1991) since the inversion operators 

for the two systems are identical. The subtle difference rests with the evaluation procedure 

from the known M* field to the wind field. The semigeostrophic system arrives at its 

wind fields through the geostrophic balance relations, while in the present mixed-balance 

system one component of the wind is evaluated through the geostrophic relation and the 

other component through the zonal balance relation with curvature information retained 

[ref. (3.78)]. The reason that we obtained the identical inversion operator to that of 

semigeostrophic one was that we adopted the approximation φ ~ Φ in (3.80). One can 

also derive a more rigorous inversion operator without this approximation. The procedure 

will be very straightforward, and has been demostrated in Chapter 2. 

• Summary of the mixed geostrophic-zonal balance model on the sphere 

Thus far we have completed our derivation of a mathematical model which filters 

transient gravity waves and is able to describe three dimensional curved flows on the 

sphere. Like many other balanced theories, the model consists of two fundamental equa-

tions: one prognostic equation and one diagnostic equation. The predictive variable is the 

potential pseudodensity from which both the mass and wind fields are retrieved by using 

the invertibility principle. A summary of this balanced model is given in Table 3.1. 

3.6 Zonally symmetric dynamics 

In this final section we demonstrate that the zonally symmetric balanced theory 

proposed by Hack et al. (1989) and Schubert et al. (1991) is, in fact, a two dimensional 

special case of our mixed zonal-geostrophic balanced theory discussed in this chapter. 

This result suggests that the theory presented in this chapter is consistent with zonally 

symmetric theory. 

We begin by imposing the zonal symmetry assumption in our generalized three di-

mensional model, i.e., letting all terms involving ∂/∂A (or ∂ /∂A in the transformed space) 

be zero, except for the term ∂A/∂A being unity. In doing so, from (3.36), (3.37) and 

(3.32), we deduce that 

u - ug, ua — 0, (3.83) 
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(3.84) 

which indicate that the meridional wind becomes purely ageostrophic, while the zonal 

wind is purely gradient. This is precisely the view used in zonally symmetric balanced 

theory. With the use of (3.83) and (3.84) the set of governing equations (3.31)-(3.35) 

reduce to 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

where the total derivative now becomes 

By comparing with (2.1)-(2.5) in Schubert et al. (1991), one will see that these are the 

s-coordinate versions of the two-dimensional, zonally symmetric balanced equations on 

the sphere. 

In transformed space, again, let us impose that ∂ /∂Λ = 0 in the system of (T3.1)-

(T3.6). The fundamental predictive equation, i.e., the potential pseudodensity equation 

(T3.1) reduces to the very-simple form 

(3.90) 

which is identical to the potential pseudodensity equation obtained in the zonally sym-

metric balanced theory [see Eq. (3.9) in Schubert et al., 1991]. This equation can be 

integrated analytically by using the method of characteristics, and the integration can be 

carried out to any time level if the diabatic heating is explicitly given. Then the diagnostic 

inversion operation can be performed at the desired time level. This has been success-

fully done for the potential vorticity modeling of the ITCZ and the Hadley circulation in 

Schubert et al. (1991). 
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The reduction of the 3 x 3 determinant to a 2 x 2 one is immediately seen upon the 

zonally symmetric condition being applied in (3.77) 

(3.91) 

(3.92a) 

(3.93) 

or by expanding the Jacobian and taking (3.81) into account, 

Also, let us consider the potential latitude equation in the form 

By substituting the zonal balanced wind relation (3.78), this equation can be written as 

(3.926) 

(3.92a,b) can be regarded as a pair of equations for M* and sin φ, which constitutes the 

invertibility principle for 2-D zonally symmetric flows. The boundary conditions associated 

with these two differential equations are given as follows. The upper boundary condition 

takes exactly the same form as the 3-D case 

(3.92c) 

(3.94) 

(3.92d) 

For the lower boundary, the constant height and isentropic surface gives 

which, by substituting in (3.78) and (3.93), leads to 

Since there was no explicit assumption of geostrophic balance in the 2-D zonally simmetric 

model, we may integrate (3.92a,b) from pole to pole without difficulty. Assuming that 

there is no difference between φ and Φ at the south and north poles, the lateral boundary 

conditions can then be written as 

(3.92e) 

(3.92f) 

Equations (3.92a)-(3.92f) reproduce the diagnostic system obtained by Schubert et al. 

(1991). 
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Table 3.1: Summary of the mixed-balance model on the sphere. 

(T3.4) 

(T3.5) 

(T3.6,T3.7) 

(T3.2) 

(T3.3) 

(T3.1) 



Chapter 4 

FREE OSCILLATIONS IN BAROTROPIC CIRCULAR VORTICES 

In this chapter, we investigate unforced wave motions in the context of reduced grav-

ity waves. In particular, we would like to calculate the eigenvalues and eigenfunctions 

associated with given barotropic circular vortices. This classical problem had been stud-

ied long before the turn of this century, as Thomson (1879) first touched such a problem. 

The detailed analysis was also given in Lamb (1932, pp. 320-324). The analytical solu-

tions from these studies indicated that for a laterally-confined, uniformly rotating fluid 

on an ƒ-plane, the only possible transient modes are the clockwise and counterclockwise 

propagating inertia-gravity waves. This result, however, can be misleading when a more 

complicated basic flow pattern is considered, because surface gradient of the fluid, the 

so called "equivalent β-effect", may then be introduced in correspondence with the ra-

dial inhomogeneity in tangential flow field. Under such circumstance, the surface height 

gradient may act as a restoring mechanism so that some kind of frequency oscillations 

other than the inertia-gravity waves may be induced. This idea was also appreciated by 

Thomson (1880) when he studied wave oscillations in barotropic vortices by resorting the 

nondivergent barotropic dynamics with a basic state tangential flow which varies with 

radius. 

Rossby (1939) reexamined this problem using a similar dynamical system in a carte-

sian frame but approximating the earth's geometry by a tangent plane, i.e., the β-plane. 

The linear solutions of this β-plane model presented the wave motions with low frequencies 

similar to those of Kelvin's (Thomson, 1880), and these waves are thenceforward named 

Rossby waves. More complete normal mode studies by using primitive equations were con-

ducted by Matsuno (1966) and by Longuet-Higgins (1968) in the context of wave motions 
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in the equatorial area and the planetary waves in Laplace's tidal equations, respectively. 

These studies all used a set of shallow water primitive equations linearized about a basic 

state of rest with the β-plane approximation or the full spherical geometry. Therefore, 

Rossby waves are presented as the allowable eigensolutions, which would otherwise be ab-

sent under the ƒ-plane approximation. Similar study of planetary waves on β-plane with 

vertical structure of the atmosphere was found in Lindzen (1967). 

Insofar as the problem was originally posed, i.e., the problem of wave motions in 

barotropic vortices on an ƒ-plane with nonresting basic tangential flows, there have been 

not any, to our knowledge, complete calculations of eigenvalues and eigenfunctions avail-

able. This type of research is necessary in the sense that it may not only provide the 

fundamental understanding of wave dynamics in vortices, vortex breakdown, but it may 

also, by combining the stability analysis, make direct applications to the studies of cer-

tain weather phenomena, for example, the spiral-banded clouds in hurricanes, the comma 

clouds associated with extratropical cyclones, tornadoes and their parental vortex circu-

lations such as hurricanes, supercells. 

The plan for this chapter is as follows. In section 4.1, we analytically solve the set 

of shallow water primitive equations linerized about a basic state of rest. Using these 

analytically obtained eigensolutions, we illustrate that in barotropic vortices on an ƒ-

plane, if the basic state is at rest, the main wave motions are confined to inertia-gravity 

types. There are, however, Rossby type of modes implicit in the system, but they are 

in an inactive state. To activate these Rossby waves in such vorticies, a nonresting basic 

flow has to be considered. In section 4.2, we thus first discuss one type of nonresting 

basic flows: Rankine's combined vortex, and then following Kelvin's approach, we seek 

an analytical solution of the nondivergent barotropic system with Rankine's vortex as 

the basic state. After all these analytical treatments, in section 4.3 we finally conduct a 

numerical calculation using the shallow water primitive equation model. The numerical 

solutions are compared with the analytical ones. 
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4.1 The wave motions in a barotropic vortex with a basic state of rest 

The dynamical system that is suitable to describle barotropic vortices is the set of 

shallow water equations in polar coordinates (r, φ), which may be written, 

where 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

and other notations are standard. We now consider a uniformly rotating vortex by which 

we mean a sheet of circular fluid bounded by a given radius a, and rotating about a vertical 

axis with a constant angular velocity ƒ, where ƒ = 2Ωsinφ0, the same as that of earth's 

at a given latitude φ0. The tangential velocity of the fluid is everywhere uniform. To 

an observer in a relative frame rotating with the earth, this circular vortex represents a 

resting basic state with a constant height surface (u,v,h) = (0,0, H). Linearizing (4.1)-

(4.4) about this basic state, we may obtain 

where σ denotes the frequency of wave perturbations, s the azimuthal wavenumber. Sub-

stituting this expression into (4.5)-(4.7), we may have the following linear system 

(4.5) 

(4.6) 

(4.7) 

where the prime quantities are the deviations from the basic state of rest. We assume that 

the perturbations have the following wave structures 

(4.8) 
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(4.9) 

In order to solve this linear system, one can combine the three equations with σ as an 

eigenvalue to be determined. There sould be three roots for eigenvalue σ, one of which is 

σ = 0. For this root, the eigensystem reduces to 

(4.10) 

(4.11) 

(4.12) 

The first two equations give the geostrophic balance relations, and the third one is the 

nondivergent condition. Therefore, we conclude that σ = 0 represents the stationary 

geostrophic modes in the eigensystem (4.9). The eigenfunctions associated with these 

geostrophic modes of zero-frequency can be found by solving the linear system (4.10)-

(4.12), which has the sole trivial solution of (u', v',gh') = (0,0,0) for any nonzero 

wavenumbers, and has infinite families of solutions for s = 0 case (axisymmetric case), 

i.e. 

(4.13) 

where h can be any arbitrary function of r. This result indicates that for barotropic 

vortices on the ƒ-plane with no relative flows to the earth's rotation, the Rossby-like 

modes manifest themselves as steady, axisymmetric swirling flows in geostrophic balance. 

These stationary geostrophic modes had been overlooked by Thomson (1879) and Lamb 

(1932). 

When σ is non-trivial, (4.9) can be solved systematically as an eigenvalue problem. 

Let us combine the three linear equations into one, and solve, say, for h field, which gives 

(4.14) 
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where k which assumes a set of discrete values satisfies the dispersion relation 

(4.15) 

The two roots of σ from this relation represent the clockwise and counterclockwise prop-

agating inertia-gravity waves. 

Equation (4.14) is the Bessel equation of order s. The outer boundary condition 

associated with this equation is given by requiring the vanishing of perturbation radial 

velocity u' at r = a. By simultaneously considering the first two entries of (4.9), this 

condition can be expressed as 

(4.16) 

Therefore, the solution of (4.14) corresponded to the finite condition in h at the vortex 

center r = 0 is found to be 

(4.17) 

where Js(κϒ) is the Bessel function of order s, and A is a constant coefficient. In order to 

calculate the eigenvalues σ, let us rewrite (4.15) in the form 

(4.18) 

(4.19) 

where the primes denote the derivatives of the Bessel functions with respect to r. Denoting 

y = σ/ƒ, and x = k 2 ^ (4.18) and (4.19) draw two curves, y = φ(x) and y2 = 1 + ax, 

in an (x,y) plane. The ordinates of intersections of these two curves give the set of 

normalized eigenvalues corresponded to the different radial modes (let us call them the 

n modes, following the convention). Figure 4.1 is shown the plot discussed above, where 

we have chosen that a = L^/a2 = gH/f2a2 « 1, with ƒ = 2Ωsin20°, H = 250m and 

a = 1000km. The upper panel is for wavenumber s = 1, and the lower for s = 5. The 

eigenfrequencies that we found from these plots are listed in Table 4.1 for the first four n 

where is the Rossby radius of deformation. Similarly, we can also rewrite 

(4.16) as 
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Figure 4.1: Determination of eigenfrequencies of inertia-gravity waves by two curves, 
y = φ(x) and y2 = 1 + αx, where a = gH/f2a2. We choose ƒ = 2Ω sin 20°, H = 250m 
and a = 1000km. (a) For wavenumber s = 1; and (b) for s = 5. 
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σ / f \ s -5 -4 -3 -2 -1 0 1 2 3 • 4 5 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

l 6.758 5.682 4.595 3.490 2.348 1.000 1.508 2.737 3.899 5.029 6.138 

2 10.625 9.392 8.130 6.827 5.459 3.953 5.389 6.732 8.023 9.279 10.509 

3 14.052 12.749 11.415 10.040 8.608 7.087 8.581 9.999 11365 12.694 13.994 

Table 4.1: Analytically calculated eigenfrequencies of inertia-gravity waves for different 
wavenumbers and radial modes. Negative wavenumbers stand for the counterclockwise 
propagation inertia-gravity waves. 

modes. There are two special cases: (1) when n = 0, the normalized frequency σ / ƒ = ±1 , 

which means the whole system oscillates with the inertial frequency ±ƒ; (2) when s = 0, 

the eigenfrequencies are still given by (4.18), but with k determined from JQ(kΑ) = 0, the 

degenerate form of (4.16). The analytical dispersion relation is given as the solid line in 

Figure 4.2, keeping in mind that the geostrophic modes which have zero frequencies will 

all be overlapped the abscissa. 

Substituting (4.17) into (4.9), we may solve for the other two eigenvectors. The results 

are 

(4.20) 

where the perurbation quantities have been normalized by a constant value of gA/(σ2—ƒ2). 

From the formula we can see that the surface height h and the tangential wind v have the 

same phase, while the radial wind u is out of phase by a quarter of a cycle. Figures 4.3 

and 4.4 show the eigenfunctions for some selected n and a. 
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Figure 4.2: Dispersion diagram of inertia-gravity waves for the first four n modes and 
for wavenumbers 0 to 5. The eigenfrequencies have been normalized by ƒ. The solid 
dispersion curves are analytically calculted, the dashed curves are numerically calculated. 
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Figure 4.3: Analytical solution of winds and height surface corresponding to inertia-gravity 
waves as function of radius for different eigenmodes. They have all been nomalized by 
arbitrary values, (a) For n=l , s = 1; (b) for n = 2, s = 1; (c) for n = 3, s = 1. 



80 

Figure 4.4: Same as Figure 4.3. (d) For n = 1, s = -1 ; (e) for n = 2, s = 2; (c) for n = 3, 
s = 3. 
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we may obtain by choosing two circuits, /i and I2, inside and outside the vortex core 

(4.22) 

4.2 The vorticity (or PV) waves in Rankine's vortex 

In passing, we have discussed the possible wave motions in a barotropic vortex with a 

resting basic state by using a set of linearized shallow-water primitive equations. In order 

to identify the nontrivial Rossby type of modes, a more complicated basic state has to be 

implemented. It is our experience, however, that even if the simplest nonresting basic state 

is adopted, the mathematical problem becomes so formidable that an analytical approach 

to the full spectrum analysis like the one in the previous section seems impossible. Before 

we go in quest of any numerical means, it is helpful for us to review some of the early 

analysis by Thomson (1880), and to develop some basic ideas for use in the later sections. 

The analytical results obtained from a simplified dynamical system, the nondivergent 

barotropic model, in studying the filtered spectra of wave motions in a barotropic vortex 

with the basic state of Rankine's type will provide some dynamical insights, in particular 

the concept of vorticity (or PV) waves. 

4.2.1 Rankine's combined vortex 

Of many basic circular flow profiles, Rankine's vortex is the simplest one, yet it is 

of meteorological relevance. It can be considered, on the first order of approximation, 

as a model of hurricanes. This will be illustrated by its velocity profile and pressure 

distributions. As shown in Figure 4.5, Rankine's vortex comprises a vortex core with a 

constant vorticity inside the core, and an irrotational outer region with zero vorticity. 

Mathematically, it can be represented by 

where £ is a constant. Using Kelvin's circulation relation 

(4.21) 
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Figure 4.5: Schematic diagram of Rankine's combined vortex, and its vorticity and wind 
distributions. 
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where V = F ( r ) β φ is the axisymmetric tangential velocity, T\ < a < t<i the radii of the 

inner circuit, the vortex core and the outer circuit, respectively. Carrying out the circuit 

integrations, we may obtain the velocity profile in association with Rankine's combined 

vortex 

(4.23) 

which, plotted in the lower panel of Figure 4.5, indicates that the tangential velocity is 

linearly increased as one moves from the vortex center outward, reaches its maximum 

value at the edge of vortex core, and then decreases at a 1/r rate. We can also find 

streamfunction of this axisymmetric flow by integrating V = dφjdr. It yields 

(4.24) 

In order to investigate the mass distribution associated with Rankine's vortex, let us 

assume that the flow is steady. With this condition, it is straightforward to derive the 

shallow water version of Bernoulli equation from (4.1) and (4.2), which is in the form 

(4.25) 

On substituting the second entry of (4.23), we obtain the expression of surface height for 

outer core region 

where the constant can be determined by requiring h —• H, as r —• oo. At this limit, we 

have 

(4.26) 

Inside the vortex core, we assume that the circular flow field is balanced by the gradient 

of surface height, giving the relation 

(4.27) 
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where ƒ = ƒ + and C is a constant which must be chosen by matching the boundary 

condition at r = a. In doing so, this equation becomes 

r V £ Roc 
Tropical depressions 200 km 10 ms - 1 0.5 x 10 - 4 s - 1 1 
Tropical storms 100 km 30 ms - 1 3 x 10 - 4 s - 1 6 
Typhoons / Hurricanes 33.3 km 45 ms - 1 13.5 x 1 0 - 4 s - 1 27 

Table 4.2: Classification of different development stages of tropical cyclones. From the 
definition by Elsberry et a1. (1985). 

In Table 4.2, we list some characteristic values of radii of the disturbances, tangential 

winds, relative vorticities and the curvature Rossby numbers for such three development 

stages. 

where we can see that: (1) as r —• oo, the surface height of the fluid is leveled out to a 

constant value H which is the approximate surface height of resting basic state; (2) at the 

vortex center r = 0, the geopotential reaches its lowest value gh0, where gh0 = 

The faster Rankine's vortex spins, the larger gho becomes, which represents a stronger 

low center system. A transient development of tropical cyclones can be depicted by the 

continuous strengthening of such a Rankine's vortex. Three typical stages along this 

development have been classified in Elsberry et a1. (1985) as tropical depressions, tropical 

storms and typhoons or hurricanes. They are all characterized by definite closed isobars 

or height surfaces with tangential circulation around the low center. 

(4.29) 

where rj = ƒ + f is the absolute vorticity. In combining (4.26) and (4.28) together, we may 

write the distribution of geopotential in a Rankine's vortex as 

(4.28) 

Integrating this equation, we have height field as a function of radius r within the core 
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With the values in Table 4.2, we can plot the pressure or surface height distributions, 

shown in the upper panel of Figure 4.6, for tropical depressions, tropical storms and 

hurricanes by using (4.29). A three-dimensional view of tropical cyclone system is also 

plotted in the lower panel of Figure 4.6. 

The above analysis can naturally be extended to a stratified fluid system. In that 

case, the tangential flow will have the exactly same profile as that in shallow water system, 

while the surface height distribution in current analysis will be replaced by the pressure 

distribution which much resemble the low-core system of hurricanes. 

4.2.2 The nondivergent barotropic wave dynamics 

Let us begin with the set of nondivergent shallow water equations in the form 

(4.30) 

(4.31) 

(4.32) 

where £ is the absolute vorticity. Since u and v are diagnostically related through the 

nondivergent condition (4.31), the first two equations can no longer predict the wind fields 

independently. Therefore, (4.30) and (4.31) must be reformulated under the constraint 

(4.32), which results in a single predictive equation, the vorticity equation, in the form 

(4.33) 

where u, v and £ are all diagnosed from the single advective variable φ through the 

following inversion operators 

(4.34) 

(4.35) 
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Figure 4.6: Surface height distribution in Rankine's vortex calculated from (4.29). (a) The 
distributions for tropical cyclone at three development stages. (b) A three-dimensional 
view of height distribution for a tropical storm case. 
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Note that the closed system of equations (4.33), (4.34) and (4.35) forms a balanced dy-

namical model, the so-called "nondivergent barotropic model". There is only one class of 

eigenfrequencies retained in this system as a result of one independent predictive equa-

tion. Rossby (1939) used this model with the β-plane approximation to promulgate the 

existance of a type of low frequency waves. These waves later were named after him, 

and are known as "Rossby waves". The restoring mechanism for this type of waves is 

the β-effect, i.e., the northward gradient of vorticity in the basic flow. The generalization 

of this type of wave dynamics to full spherical geometry was straightforwardly done by 

Haurwitz(1940). 

Along the same line on an ƒ-plane, however, if one linearizes this system about a basic 

state of rest and solves the eigenvalue problem, the only eigenfrequency that he or she 

would get is the stationary geostrophic mode, which is consistent with the full spectrum 

analysis using the primitive dynamical system discussed in the previous section. 

We now employ a more complicated, nonresting basic state to investigate this problem 

further. In particular, let us linearize (4.33)-(4.35) about a basic state of Rankine's vortex. 

The resultant linearized vorticity equation is 

(4.36) 

where V is given by (4.23). Note that this equation holds everywhere in the model domain 

except at r = a, where the discontinuity in the vorticity field occurs. We next substitute 

a wave perturbation 

(4.37) 

into (4.36) to obtain 

In searching for solutions of nonsolid-body rotation, σ φ s V / r , (4.37) must yield 

(4.38) 

(4.39) 

which has general solution of the form 
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Due to the finiteness of the solution when r —• 0, and r —• oo, (4.39) is reduced to its 

proper form 

(4.40) 

where A and B are two constants which must be determined by boundary conditions at 

r = a. The first boundary condition that we consider here is that the radial velocity 

u = —∂φ/r∂φ must be continuous, which gives the condition that Aas = B/aa , so that 

(4.40) becomes 

(4.41) 

where D = Aa* = B/a" is another constant, which may be determined by the continuity 

of tangential velocity v = ∂φ/∂r at r = a 

where f , defined in (4.21), is the constant vorticity of Rankine's vortex core. We now 

evaluate this equation at r = a + 77, where rj(φ,t) = is the particle radial 

displacement, and linearize it. In so doing, the above equation gives 

(4.42) 

Next we need to consider a dynamical boundary condition in order to determine the 

eigenvalue appeared in the general solution. This condition may be given by considering 

the continuity of fluid which indicates that every surface inside the fluid, including the 

interface at r = a, is a material surface, so that the radial velocity associated with particle 

displacement at r = a must be equal to the radial movement of the interface itself, i.e., 

(4.43) 

When substituted into the expressions for 77 and u', (4.43) yields 

After rearranging terms, we finally get the dispersion relation 

(4.44) 
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This relation obviously describes wave motions of Rossby type, because (4.44) can easily 

be rewritten into the well-known form: σ = us - βs/s2 , the Rossby wave disperssion 

relation, where now the β term is As the restoring mechanism, the β effect here may 

be considered to bear the same physical interpretation as in Rossby's case in the sense 

that approximates the radial gradient of vorticity at basic state across the interface at 

r = a, although this gradient is infinitely large in this particular mathematical problem. If 

we tried to think about this problem in a more physical situation, where the vorticity jump 

from a finite value to zero must occur over a finite spatial distance, would represent 

some averaged gradient over a unit distance. Another interpretation is that is related 

to the nonresting basic tangential flow, and therefore the radial gradient of surface height 

(or more generally, the pressure gradient) is induced and maintained, which may certainly 

act as the restoring force. In any rate, waves can be generated or propagated in: (1) any 

flow field endowed with the gradient in its vorticity field, or in its potential vorticity (PV) 

field for more general case of compressibe, stratified fluid; (2) any nonresting flow field 

which generates a gradient of mass distribution. It is understandable that such waves 

constitute a more general class of wave motions than Rossby waves. In other words, the 

Rossby waves arised from the vorticity (PV) gradient due to the earth's geometry (or the 

slope of bottom topography, in the context of oceanography) are just deligated a subclass 

of these generalized waves. Here we call these waves the vorticity waves, or PV waves. 

It is of no surprise, by the same token, that there exists only one single radial mode 

(or n mode) of these waves in this nondivergent barotropic model. The vorticity wave can 

only be initiated and propagated along the discontinuous interface at r = a, now that the 

vorticity gradient is zero almost everywhere and is singular at one site. That the dynamical 

system under nondivergent conditions perceives and maintains this vorticity discontinuity 

results in the "solitarization" of vorticity waves. This is, however, not the case in the 

models with divergent flows, where the PV gradient or the gradient of potential pseudo-

height may vary continuously, regardless of the jump in the vorticity field. Therefore, the 

PV waves may present a family of n modes (e.g., the primitive equation model in the next 

section and the mixed balanced model in the next chapter). 
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Note also that (4.44) gives an oscillation with a much higher frequency than that of 

Rossby waves in a common sense. Table 4.3 lists the normalized frequencies calculated 

from (4.44) in terms of different developing stages of tropical cyclones. The frequency of 

this generalized Rossby wave is proportional to the rotational rate of a circular vortex. 

As the low-centered system deepens, and the vortex spins up, the low-frequency Rossby 

waves can be translated to the wave motions with high frequencies. For example, the 

frequencies shown in Table 4.3 for a mature hurricane can be as high as a hundred times 

the Coriolis parameter, and as shown in the next section, such frequencies are even higher 

than the highly oscillatory inertia-gravity modes. 

Table 4.3: Normalized frequencies of generalized Rossby waves predicted by the nondiver-
gent barotropic model. 

Under this analysis, generally speaking of Rossby wave motions representing the slow 

motions in the atmosphere and ocean may not be a quite scientifically founded statement. 

By the same token, generally constructing a model to filter all the fast modes may not be 

a proper procedure for studying certain types of problems. 

The dispersion relation (4.44) is plotted in Figure 4.7, with the values listed in Table 

4.3. All the dispersion curves are shifted along the wavenumber axes by one unit, with 

wavenumber 1 being the stationary mode, and wavenumber 0 corresponding to a negative 

frequency whose physical interpretation is not clear. On the other hand, the wavenumber 

0 motion (i.e., axisymmetric expansion or contraction of the vortex) in an incompressible 

fluid system is not allowed. This can be seen from (4.32), where for zero-wavenumber 

motion, ru = const, for all r. But the constant is zero (determined by the condition at 

the vortex center). Thus, in order for all r that ru = 0 holds, u must be zero. This may 

partially explain why the dispersion curves are shifted along the wavenumber axis. The 

s = l s = 2 s = 3 s = 4 s = 5 
Tropical depressions 

σ/ƒ Tropical storms 
Typhoons/Hurricanes 

0 1.00 2.00 3.00 4.00 
0 6.02 12.04 18.06 24.08 
0 27.09 54.18 81.28 108.37 



Figure 4.7: Dispersion diagram of generalized Rossby waves for wavenumber 1 to 5. Dif-
ferent curve is for different intensity of Rankine vortex represented different development 
stage of a tropical cyclone. 
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Figure 4.8: Analytical solution of winds and streamfunction of generalized Rossby waves 
as functions or radius, calculated from a nondivergent barotropic model. The case shown 
here is for a = 100km and s = 1. 
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steepest line correspons to the strongest vortex. The eigenfunction is given by (4.41) and 

u and v fields are retrived through (4.34) as 

(4.45) 

(4.46) 

and 

where u' and v' have been normalized by the constant D. Again we see that the stream-

function and tangential velocity have the same phase, while the radial velocity has phase 

sifting by one quarter of a cycle. The eigenfunctions corresponded with the tropical storm 

case for s = 1 are plotted in Figure 4.8. We note that the discontinuity occurs in the 

tangential velocity field. 

4.3 Free oscillations in Rankine's vortex 

In this section, we will use a linearized primitive equation model to conduct a full 

spectral analysis of unforced wave motions superimposed on an axisymmetric flow field of 

Rankine's type. The model is a modified version of that of Stevens and Ciesielski (1984), 

and was used by Flatau and Stevens (1989) to study the barotropic and inertial instability 

in the hurricane outflow layer. A brief discription of this model is as follows. 

Let us consider a set of shallow water primitive equations of the form (4.1)-(4.4). We 

now linearize this set about a basic state of axisymmetry, i.e., (u,v,h) = (0, v(r),h(r)). 

In so doing, we obtain 

When we substitute a wave perturbation of the form x' = i(r)expi(sφ — σt), where x 

denotes u, v or h, into this system, (4.47)-(4.49) becomes 
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where we have defined the Doppler-shifted frequency σ, absolute vorticity of the mean 

flow fj, and modified coriolis parameter ƒ as: 

(4.51) 

(4.52) 

(4.53) 

respectively. Noting that the Doppler-shifted frequency σ is a function of r, we rewrite 

(4.50) in the following form: 

(4.50) 

(4.54) 

(4.55) 

This gives an eigenvalue problem 

where σ denotes the eigenvalues, and X the corresponded eigenvectors. Equation (4.54) 

is first discretized in the radial direction on a staggered grid with h defined at points 

r = nAr, and u and v defined at r = (n + 1/2)Ar points where n = 0,1,2..., and A r is 

the grid spacing. We then solve the discretized system as an eigenvalue problem by using 

the EISPACK routines (Smith et a1., 1976). 

4.3.1 Numerical calculations of eigenfrequencies and eigenfunctions in baro-
tropic vortices with a resting basic state 

In order to test the credibility of the numerical model, we first run the model with a 

resting basic state, then compare the model output with the analytical results discussed 

in section 4.1. 

The boundary conditions which are compatible with the analytical case are: 
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-5 -4 -3 -2 -1 0 1 2 3 4 5 

0 1.000 1.000 1.000 1.000 1.000 l.OOO 1.000 1.000 1.000 1.000 1.000 

1 6.812 5.729 4.632 3.518 2.365 1.000 1.525 2.765 3.938 5.078 6.196 

2 10.681 9.449 8.186 6.878 5.503 3.993 5.433 6.784 8.080 9.338 10.568 

3 14.071 12.782 11.459 10.091 8.661 7.138 8.634 10.050 11.410 12729 14.015 

Table 4.4: Numerically calculated eigenfrequencies of inertia-gravity waves for different 
wavenumbers and radial modes. Negative wavenumbers stand for counterclockwise prop-
agation inertia-gravity waves. 

1. At the outer boundary, we assume no perturbation radial wind, i.e., 

u' = 0; 

2. At the vortex center (r = 0), the finite condition is required in perturbation surface 

height field, which gives: 

h' = 0 for s φ 0, 

dh'/dr = 0 for s = 0. 

In Table 4.4, we listed the calculated eigenfrequencies for the first four n modes. They are 

identified as the frequencies of waves of the first class, the inertia-gravity waves, after com-

pared with those in Table 4.1. The results are so consistant with the analytical solutions 

that one can hardly distinquish the differences in their dispersion relation diagram (ref. 

Figure 4.2: the dashed lines are for the numerical calculations). The geostrophic modes 

(not listed in this table) all have zero frequencies as expected. We also plot selected 

eigenfunctions in Figure 4.9. 

4.3.2 Numerical calculations of eigenfrequencies and eigenfunctions with a 
basic state of Rankine's vortex 

We now specify the basic state of axisymmetry to have the radial structure of Rank-

ine's vortex, as discussed in the previous section. The intensity of the vortex is chosen 

so as to represent the three different stages of a tropical cyclone's evolution. The inner 
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(a) 

(b) 

(c) 

Figure 4.9: Numerical solution of winds and height surface corresponding to inertia-gravity 
waves as function of radius for different eigenmodes. They have all been nomalized by 
arbitrary values, (a) For n=l , s = 1; (b) for n = 2, s = 1; (c) for n = 3, s = 1. 
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boundary condition is the same as that of the "resting-basic-state" run, whereas the outer 

boundary condition is modified to assume vanishing of perturbation surface height instead, 

i.e., h' = 0 at r = 1000km. 

The model results are first summarized in Tables 4.5-4.7. The eigenfrequencies are 

listed in terms of the inertia-gravity waves and the generalized Rossby waves for different 

wavenumbers and radial modes. The dispersion relation diagram is shown in Figure 4.10 

for the first three radial modes both for inertia-gravity and generalized Rossby waves. The 

panel from top to bottom is each for tropical depression, tropical storm and hurricane 

cases. We can see from these diagrams that in the early developing stage of a tropical 

cyclone (e.g., a tropical depression) when the rotation of the vortex is slower, and the 

vortex is larger, Rossby waves are primarily presented as the slow motions, much slower 

than the inertial-gravity oscillations. 

Inertia-gravity modes Rossby modes 
n = 1 2 3 4 5 n=l 2 3 4 5 

s =-5 8.78 12.17 15.31 18.34 21.29 - - - - -

-4 7.60 10.91 14.02 17.06 20.06 - - - - -

-3 6.40 9.63 12.74 15.82 18.87 - - - - -

-2 5.18 8.37 11.51 14.62 17.69 - - - - -

-1 4.08 7.20 10.30 13.41 16.52 — - - - -

0 3.01 5.87 9.06 12.23 15.36 0.00 0.00 0.00 0.00 0.00 
1 4.24 7.56 10.84 14.07 17.24 1.00 0.72 0.56 0.44 0.36 
2 5.68 9.17 12.52 15.80 19.00 2.00 1.44 1.10 0.98 0.89 
3 7.03 10.65 14.10 17.43 20.67 3.00 2.09 1.69 1.33 1.08 
4 8.34 12.0-7 15.58 18.96 22.24 4.01 2.91 2.25 1.77 1.44 
5 9.62 13.44 17.00 20.42 23.72 5.01 3.76 2.81 2.22 1.80 

Table 4.5: Numerically calculated eigenfrequencies for a basic vortex of the tropical de-
pression case. 

As the vortex spins up and shrinks, the frequencies of these Rossby waves become 

higher and higher, and they eventually exceed those of the inertia-gravity waves. This 

result is qualitatively consistent with the analytical solution obtained from the nondiver-

gent barotropic model, where the dispersion relation (4.44) states that the frequency of 

Rossby waves is proportional to the rotation rate of the vortex. On the other hand, as 
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Inertia-gravity modes Rossby modes 
n = 1 2 3 4 5 n=l 2 3 4 5 

s =-5 10.10 13.96 17.50 20.83 23.96 - - - - -

-4 8.72 12.47 15.93 19.18 22.23 - - - - -

-3 7.32 10.94 14.31 17.53 20.70 - - - - -

-2 5.88 9.40 12.82 16.21 19.58 - - - - -

-1 4.73 8.37 11.93 15.39 18.79 - - - -

0 3.16 6.84 10.57 13.03 17.96 0.00 0.00 0.00 0.00 0.00 
1 4.96 8.89 12.77 16.59 19.04 5.98 3.14 2.07 1.46 1.08 
2 6.69 10.83 14.83 18.74 22.55 11.97 5.88 4.31 2.96 2.18 
3 8.29 12.58 16.67 20.64 24.51 17.98 10.39 6.41 4.46 3.28 
4 9.84 14.25 18.40 22.41 26.30 23.99 14.86 8.58 5.96 4.38 
5 11.35 15.88 20.09 24.12 28.03 30.01 17.50 10.76 7.47 5.49 

Table 4.6: Numerically calculated eigenfrequencies for a basic vortex of the tropical storm 
case. 

Inertia-gravity modes Rossby modes 
n = 1 2 3 4 5 n=l 2 3 4 5 

s =-5 11.96 16.67 21.06 25.26 29.33 - - - - -

-4 10.35 14.95 , 19.28 23.45 27.51 - - - - -

-3 8.71 13.19 17.45 21.59 25.62 - - - - -

-2 7.02 11.35 15.54 19.63 23.64 - - - - -

-1 5.37 9.68 13.96 18.20 22.39 - - - - -

0 3.53 7.78 12.09 16.39 20.64 0.00 0.00 0.00 0.00 0.00 
1 5.53 9.97 14.38 18.74 23.04 - - 2.84 1.65 1.06 
2 7.42 12.06 16.54 20.96 25.30 - 15.46 5.74 3.29 2.12 
3 9.19 13.97 18.54 23.01 27.36 - 22.69 8.82 4.99 3.20 
4 10.90 15.82 20.45 24.93 29.29 108.78 29.91 11.99 6.71 4.29 
5 12.58 17.61 22.30 26.81 31.18 126.21 38.02 15.24 8.45 5.39 

Table 4.7: Numerically calculated eigenfrequencies for a basic vortex of the hurricane case. 
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the vortex rotates faster, the inertial stability factor increases, and thus the inertial oscil-

lation is enhanced. This process tends to increase the frequency of inertia-gravity waves 

considerably. However, the restoring force for gravitational oscillations is related to gh. 

As the vortex rotates faster, the vortex becomes shallower near the center. This process 

tends to exert a counter-effect on the increase of the frequency of inertia-gravity waves. 

The combined effect of both processes may not make as substantial a change in frequency 

for inertia-gravity waves as for Rossby waves. This seems to be the case shown in the dis-

persion diagram. The high-frequency Rossby waves, unlike high-frequency inertia-gravity 

waves, can be dynamically important in atmospheric and oceanic motions, because they 

represent the components of the highly rotational motion itself. 

In Figure 4.11, we plot some selected eigenfunctions of inertia-gravity waves for the 

tropical storm case. The three panels in this figure show the eigenvectors of the first, 

second and third radial modes for azimuthal wavenumber 1. The unbalanced flows and 

mass is distributed over the whole domain with the strongest influence of basic flow in the 

vicinity of the edge of Rankine's vortex core. All the fields are still continuous functions 

of r, but the nonsmooth feature is seen in the tangential velocity field. 

The eigenfunction diagrams for Rossby waves are shown in Figures 4.12 and 13. Both 

the balanced mass and flow fields are concentrated within or near the Rankine vortex. 

As we go from low radial modes to the higher ones (from the top down: n=l,2,...,6), the 

concentrated blob of u, v and h fields begin to spread out, and the discontinuous interface 

of vorticity moves outward from the edge of Rankine's vortex. The enveloped shapes 

of these eigenvectors are very similar to those derived from the nondivergent barotropic 

model. An exceptional feature is presented in s = 1, n = 1 mode, where height surface 

does not go to zero as r —• 0. This mode may represent a computational mode. 

Another problem associated with this model simulation is that the resolution in the 

radial direction may not be good enough, especially inside the Rankine vortex core. This 

problem may result in missing some physically important eigenmodes, e.g., those unresoled 

modes listed with dashes in the Rossby frequency manifold in Table 4.7. 
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Figure 4.10: Dispersion diagram for both inertia-gravity waves and Rossby waves, (a) 
Tropical depression, (b) tropical storm, (c) hurricane. 
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Figure 4.11: Numerically calculated eigenfunctions of inertia-gravity waves for basic vortex 
of the tropical storm case, (a) For n = 1, s = 1; (b) for n = 2, s = 1; (c) for n = 3, s = 1. 
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Figure 4.12: Numerically calculated eigenfunctions of Rossby waves for a basic vortex of 
the tropical storm case, (a) For n = 1, s = 1; (b) for n = 2, s = 1; (c) for n = 3, s = 1. 
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Figure 4.13: Same as Figure 4.12 exccpt (d) for n = 2, s = 2; (e) for n = 3, s = 3; (f) for 
n = 3, s = 1. 





Chapter 5 

THE LINEAR DYNAMICS OF MIXED-BALANCE SYSTEMS 

The theories developed in Chapters 2 and 3 constitute filtered models, namely the 

inertia-gravity waves have been removed from the systems. This, however, should be 

justified in some way. In this chapter we solve the mixed geostrophic-gradient balanced 

equations, on an ƒ-plane and on a sphere, and compare their eigensolutions to those of the 

primitive equation models. The comparisons serve two objectives: (1) as we have already 

stated above, to check the filtering processes; (2) to measure the accuracy of the solutions 

from these balanced models in comparison with the solutions from the primitive equation 

models in the linear context. 

The chapter is divided into two sections. In section 5.1, the balanced dynamical theory 

developed in Chapter 2 (the ƒ-plane theory) is applied to the study of linear wave motions 

in a barotropic circular vortex, in particular a Rankine vortex. Then the results are 

compared with those from the primitive equation model and the nondivergent barotropic 

model presented in the previous chapter. A similar analysis of the spherical balanced 

theory developed in Chapter 3 is conducted in section 5.2, where the perturbations are 

superimposed on a resting atmosphere. The results are compared with those from tidal 

theory (Longuet-Higgins, 1968). 

5.1 Vorticity (or PV) waves in balanced barotropic vortices 

In order to study wave motions in barotropic vortices with balanced signature, we 

need to find a simple version of the mixed-balance model developed in Chapter 2 with 

a one-layer vertical structure. Therefore, in the first part of this section we briefly go 

through the same procedure as presented in Chapters 2 and 3, to derive a shallow water 

version of the mixed-balance theory. In the second part of this section, we linearize this 
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shallow water balanced model about a basic state of axisymmetry, and obtain a radial 

structure equation. We then solve this equation by specifying the axisymmetric basic 

state as Rankine's type, and discuss and compare the solutions with those of the primitive 

equation model in the final subsection. 

5.1.1 The mixed-balance shallow water model 

The set of barotropic, balanced governing equations can be derived from the set of 

shallow water primitive equations through a small Rossby number analysis. The proce-

dures are exactly the same as those presented in Chapters 2 and 3. This leads to the 

shallow water version of mixed geostrophic-gradient balanced model as follows: 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

where h is the free surface height, S the sources or sinks of h, and 

is the horizontal material derivative, with the advective processes carried out by the total 

winds (u, v). Formally similar to semigeostrophic theory, the advected momenta, however, 

are the geostrophic and gradient winds. They are defined as 

(5.5) 

The definition and physical meaning of the distortion factor 7 have been discussed in 

some detail in Chapter 2. Because curvature effects have been considered, and thus the 

centrifugal force comes into play, this system, (5.1)-(5.5), can describe highly curved 

flows in a barotropic atmosphere, especially barotropic circular vortices. In the limiting 

case when the flow has an infinitely small curvature, 7 —• 1, the system reduces to the 

semigeostrophic equations of uniform vertical structure. 
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Following the procedure of Chapter 2, we next perform a canonical transformation by 

using the set of combined geostrophic and potential radius coordinates, i.e., we transform 

the system from (r,φ,t) space to (R, Φ,T) space, with R and Φ given in (2.55) and (2.56), 

t = T being time. Another useful definition is the Bernoulli height: 

(5.6) 

which can be thought as the free surface height in the transformed space. We can also 

prove that the derivatives of the physical height and the derivatives of the Bernoulli height 

are related by 

(5.7) 

By the argument presented in Chapter 2, we can neglect the additional term in the first 

entry on the right hand of (5.7). The discussions and derivations henceforth will not con-

sider this small correction term. With these relations, (5.1) and (5.2) can be transformed 

into their canonical forms: 

(5.8) 

(5.9) 

Substituting these two canonical equations into the total derivative in the transformed 

space of the form: 

(5.10) 

(5.11) 

where 

we obtain the familiar result that the advective processes in transformed space are now 

carried out only by the balanced flows. The unbalanced parts of the wind have become 

implicit in the coordinate transformation. 

The vorticity equation (2.66) derived in Chapter 2 is reduced to 

(5.12) 
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where 

(5.13) 

The potential vorticity equation can be derived by combining the vorticity equation (5.12) 

and the continuity equation (5.3). This yields 

(5.14) 

where P = Ϛ/h is the shallow water potential vorticity. When sources or sinks of surface 

height are absent, the potential vorticity is a materially conserved quantity, which is the 

equivalent physical law of Ertel-Rossby's for the shallow water, mixed geostrophic and 

gradient balanced flows. We now define a new physical quantity, the potential height h*, 

in the form 

(5.15) 

We see that potential height is smaller than actual height in cyclonic flows, and larger than 

actual height in anticyclonic flows. In the case of no relative flow, the potential height is 

the physical height itself. Noting the reciprocal relation between the potential vorticity 

and potential height, namely Ph* = ƒ, and substituting (5.10), we may finally obtain a 

predictive equation for potential height: 

(5.16) 

where U and V which have been defined in (5.11) are related to the single variable H. 

Once we know H at every time, we may continuously integrate (5.16) forward in time. 

Therefore, we next need to find an equation for H. We shall be aware of that (5.15) 

actually gives a diagnostic relation between the potential height h* and the Bernoulli 

height W, because (5.15) can be written 

(5.17) 

where | r 2 , φ, u2
g and v2 can all be expressed in terms of H through (2.55), (2.56), (5.5) 

and (5.7). Thus, (5.16) and (5.17) form a closed system. This system is the barotropic 

version of the mixed-balance theory that we presented in Chapter 2. 
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which gives 

and 

The second term on the right-hand side of (5.24) can be neglected in most physical situa-

tions, because it is often true that r ' /f <C v'gjvg. In (5.23), we have also used the fact that 

5.1.2 Linear dynamics of barotropic mixed-balance theory on an ƒ-plane 

We now consider an unforced fluid so that there are no external sources or sinks that 

affect the free surface. For such a fluid, if we linearize (5.16) about a basic state of rest 

with a constant height surface, we can only get modes with zero frequencies. These modes 

correspond to stationary geostrophic modes in the primitive equation solutions discussed 

in section 4.1. 

We next consider a more complicated basic state, a nonresting basic state with a 

steady, axisymmetric flow, i.e., 

(5.18) 

(5.19) 

From (5.8), (5.9) and (5.11), this basic state gives 

After we linearize the potential height equation (5.16) about the basic state (5.18) and 

(5.19), we obtain 

(5.20) 

Although V and h* are given by the structure of the basic flow, (5.20) is still not closed. 

In order to solve this equation, we have to also linearize the invertibility principle to find 

the relationship between H' and h*'. From (5.5) and (5.7), we note that 

(5.21) 

(5.22) 

(5.23) 

(5.24) 



109 

(5.30) 

f = f(R), which we shall prove next. Considering the geostrophic and potential radius 

coordinates (2.55) and (2.56), we have 

(5.25) 

(5.26) 

and 

With these preliminary steps, we can now linearize the invertibility equation (5.17) to 

obtain 

(5.27) 

(5.28) 

Note that the basic state should exactly satisfy the governing equations so that 

Equation (5.27) then becomes 

On substituting in (5.22) and (5.24), and denoting ϒ = ∂T/R∂R, we finally obtain the 

linearized invertibility principle 

(5.29) 

Let us now substitute (5.29) into (5.20), and assume the perturbation Bernoulli height to 

have the following wave form 
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and 

After these substitutions, we obtain the radial structure equation in the form 

(5.31) 

where σ = σ-Vs/R is the Doppler-shifting frequency. From the definitions of the potential 

height, (5.15), and the gradient wind, (5.23), we also note that 

(5.32) 

(5.33) 

(5.34) 

With all these results, we can rewrite (5.31) 

This equation presents an eigenvalue problem. There is, obviously, only one class of 

eigenfrequencies in this system. In contrast with the primitive equation model, the shallow 

water primitive equation system presented in the previous chapter for instance, where three 

classes waves are found, the present balanced system, (5.16) and (5.17) or its linear form 

(5.34), constitutes a filtered model. One should also compare (5.34) with the nondivergent 

barotropic model discussed in Chapter 4, equation (4.38) say. Equation (5.34) exactly 

reduces to (4.38) under two conditions: (1) the curvature of the fluid is infinitely small, 

i.e., Roc = V/ fr 0, so that R ~ r, and T ~ ^R2, T ~ 1; (2) the flow is in a nondivergent 

limit, i.e., the mean depth of the fluid gh —• oo. Under these circumstances, (5.34) becomes 

(5.35) 

which is exactly the Kelvin problem discussed in Chapter 4. This also proves that our 

mixed-balance theory is more general than the quasi-geostrophic and semigeostrophic 

theories, because QG and SG generalize the nondivergent barotropic system by including 

the proper vertical structure and the divergence of the fluids. This, by the analysis above, 

is just one aspect of the generalization. Our mixed-balance theory not only includes the 

proper vertical structure (see Chapters 2 and 3), and divergence of the fluids, but also 

allows curvature of the flows. 
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5.1.3 T h e potential vorticity waves associated with Rankine's vortex 

Equation (5 .34) is a linear, second order differential equation with variable coefficients. 

For a resting basic state, there only exist stationary modes as we pointed out earlier. For 

any nonresting basic state, the problem is so complicated that the analytical solution 

method is impossible. Therefore, we now attempt to solve (5.34) numerically. Because 

the Doppler-shifted frequency is a function of radius, we have to reformulate (5.34) into a 

standard eigenvalue problem. Thus, we write (5.34) in the form 

(5.36a) 

(5.36b) 

(5.36c) 

where A and B are linear operators defined as 

where a, 6, c, d, e, ƒ and a are all variable coefficients which relate to the nonresting basic 

state of axisymmetry. They are: 

Equation (5.36a) is discretized on a uniform grid in the radial direction, i.e., R = tiAR, 

where n = 1,2,3,..., and A R is the grid spacing. We then solve the eigenvalue problem 

of the form 

(5.37) 

where σ is the eigenvalue, A and B are the coefficient matrices, and X are the correspond-

ing eigenvectors. 

We next specify the basic state as Rankine's vortex, which we have studied in great 

a detail in the previous chapter. The tangential wind as the function of R takes the form 

(5.38) 
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(5.39) 

(5.40) 

(5.41) 

The derivative of ϒ with respect to R, which appears in the coefficient c, can be found 

using 

(5.42) 

(5.43) 

which gives 

(5.44) 

(5.45) 

Equations (5.38)-(5.45) are used in (5.36) or (5.37). The intensity f and the size R1 of the 

Rankine vortex are chosen according to the values listed in Table 4.2. The eigenfrequencies 

or it can be expressed in terms of its streamfunction as 

where f and H0 are constants, R1 is the radius of inner core or the radius at which the 

tangential wind reaches its maximum value in Rankine's vortex. From (5.26), we find 

As defined previously, ϒ is just the derivative of T, thus 

From (5.6), (5.23) and (5.26), we can express the physical height in terms of quantities in 

transformed space 

and its derivative with respect to R 
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computed from the mixed-balance model are compared with those from the primitive 

equation model (see Chapter 4) side by side in Tables 5.1-5.5 for azimuthal wavenumbers 

1 to 5. The numbers listed in each Table are the frequencies normalized by the coriolis 

parameter, and each column contains the first 10-radial modes. 

From these tables we can apparently identify that the eigenmodes predicted by the 

mixed-balance model are of the Rossby type, and they compare remarkably well to the 

eigensolutions from the primitive equation model. These points can also be illustrated by 

the dispersion diagrams, shown in Figure 5.1. The three panels in this figure are for three 

Rankine vortices of different intensities, with increasing intensity from top to bottom. 

The solid lines are the dispersion curves calculated by the mixed-balance model, and the 

dashed lines are those by the primitive equation model, for five different radial modes. The 

solutions from two models are consistent. In complementing the discussion of (5.34) and 

(5.35), we also plot the solutions from the nondivergent barotropic model (dotted lines). 

The single frequency curve and its shift along the wavenumber axis are, again, the two main 

features presented by this nondivergent barotropic system. These features, however, are 

seen neither in the primitive equation model nor in the mixed-balance model, which may, 

as we discussed in the previous chapter, be due to the differences of the vorticity model 

and the potential vorticity models; of the nondivergent flow system and the divergent flow 

systems. 

The balanced winds can be computed from the eigenfunction "H by (5.8), (5.9) and 

(5.11). Figure 5.2 shows these balanced mass and winds corresponded to eigenfrequencies 

s = 1, for n = 1, 2, 3 of the Rankine vortex with size and intensity corresponding to 

tropical storm, from the top to bottom panels. Figure 5.3 is the similar plot for s = 2, 

n = 2; s = 3, n = 3; and s = 4, n = 4 modes. These eigenvector plots resemble those of 

Rossby wave motions from the primitive equation model and the nondivergent barotropic 

model (see Figures 4.8,4.12 and 4.13 of Chapter4), which further indicates that our mixed-

balance theory does filter the inertia-gravity waves, and retains reasonable accuracy of the 

original governing laws of the primitive equations. However, there are still some differences 

in eigenfunctions for larger radial modes from the two model simulations. 
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s = 1 
Tropical depressions Tropical storms Typhoons / Hurricanes 

PE Balanced PE Balanced PE Balanced 

1 . 0 0 1 1.003 5.976 6.009 - 27.051 
0.722 0.688 3.136 3.850 - 5.465 
0.556 0.598 2.074 2.347 2.843 3.468 
0.441 0.467 1.462 1.596 1.646 1.833 

n 0.358 0.375 1.084 1.157 1.058 1.146 
0.296 0.308 0.834 0.878 0.738 0.785 
0.249 0.257 0.661 0.690 0.544 0.572 
0.212 0.219 0.537 0.556 0.417 0.436 
0.184 0.188 0.444 0.458 0.331 0.343 
0.160 0.164 0.374 0.384 0.268 0.277 

Table 5.1: The eigenfrequencies computed from the mixed-balance model are compared 
with those from the shallow water primitive equation model for azimuthal wavenumber 1. 
Each column presents the first 10 n modes. 

s = 2 
Tropical depressions Tropical storms Typhoons / Hurricanes 

PE Balanced PE Balanced PE Balanced 

2.004 2.005 11.967 12.028 - 54.126 
1.438 1.406 5.880 6.334 15.459 12.707 
1.101 1.081 4.307 4.070 5.735 5.503 
0.886 0.858 2.964 2.844 3.293 3.114 

n 0.716 0.698 2.181 2.102 2.123 2.018 
0.592 0.579 1.673 1.618 1.481 1.417 
0.497 0.489 1.324 1.285 1.092 1.051 
0.424 0.418 1.074 1.045 0.838 0.810 
0.366 0.361 0.888 0.867 0.663 0.644 
0.319 0.315 0.747 0.731 0.537 0.525 

Table 5.2: Same as Table 5.1 except for azimuthal wavenumber 2. 
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s = 3 
Tropical depressions Tropical storms Typhoons / Hurricanes 

PE Balanced PE Balanced PE Balanced 

3.006 3.007 17.976 18.043 - 81.195 

2.087 2.139 10.388 9.770 22.686 19.719 

1.688 1.644 6.413 6.248 8.815 8.601 

1.327 1.304 4.457 4.351 4.989 4.823 

n 1.075 1.060 3.280 3.208 3.203 3.104 

0.889 0.878 2.515 2.465 2.230 2.170 

0.747 0.740 1.990 1.954 1.642 1.604 
0.637 0.632 1.613 1.587 1.259 1.235 

0.549 0.546 1.334 1.315 0.996 0.980 
0.479 0.476 1.122 1.107 0.807 0.796 

Table 5.3: Same as Table 5.1 except for azimuthal wavenumber 3. 

s = 4 
Tropical depressions Tropical storms Typhoons / Hurricanes 

PE Balanced PE Balanced PE Balanced 

4.008 4.010 23.994 24.058 108.779 108.263 
2.909 2.876 14.864 13.206 29.907 26.622 

2.245 2.209 8.577 8.432 11.985 11.683 
1.771 1.750 5.961 5.860 6.707 6.539 

n 1.435 1.421 4.384 4.315 4.291 4.193 
1.187 1.177 3.360 3.311 2.982 2.924 

0.998 0.991 2.657 2.622 2.193 2.158 
0.850 0.845 2.153 2.129 1.681 1.658 
0.733 0.730 1.781 1.763 1.329 1.314 

0.639 0.636 1.497 1.483 1.077 1.067 

Table 5.2: Same as Table 5.1 except for azimuthal wavenumber 2. 
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Wave number 

(b) 

Wave number 

Figure 5.1: Dispersion diagrams compares Rossby wave frequencies from the mixedbalance 
models (solid curves), the primitive equation model (dashed curves) and the nondivergent 
barotropic model (dotted curves). From the top to bottom panels are for vortices with 
different intensities. 



Figure 5.2: Balanced wind and mass fields calculated by the mixed-balance model, (a) 
For n = 1, s = 1; (b) for n = 2, s = 1; (c) for n = 3, s = 1. 
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(d) 

(e) 

Figure 5.3: Same as Figure 5.2 except (d) For n = 2, s = 2; (e) for n = 3, s = 3; (f) for 
n = 4, s = 4. 
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s = 5 
Tropical depressions Tropical storms Typhoons / Hurricanes 

PE Balanced PE Balanced PE Balanced 

5.009 5.012 30.014 30.073 126.342 135.330 

3.761 3.613 17.499 16.633 38.023 33.474 

2.807 2.773 10.761 10.617 15.239 14.745 

2.216 2.196 7.471 7.372 8.445 8.254 

n 1.796 1.782 5.491 5.422 5.385 5.283 
1.485 1.475 4.206 4.158 3.738 3.679 

1.248 1.241 3.325 3.291 2.747 2.711 

1.063 1.059 2.694 2.670 2.104 2.082 

0.917 0.914 2.227 2.210 1.663 1.649 

0.799 0.797 1.872 1.860 1.348 1.338 

Table 5.5: Same as Table 5.1 except for azimuthal wavenumber 5. 

5.2 The linear eigenmodes of the mixed-balance model on a sphere 

In this section, we first briefly review the tidal wave theory and present some of the 

solutions obtained by Longuet-Higgins (1968). We then discuss the linear dynamics of the 

mixed-balance theory on sphere, comparing solutions of this model with those of the tidal 

theory. 

5.2.1 The eigenfrequencies and eigenfunctions of Laplace's tidal equation 

Let us now take a set of shallow water version of (3.6)-(3.9),in Chapter 3, and linearize 

this set about a basic state of rest with a constant height surface (u, v, h) = (0,0, H). This 

leads to Laplace's tidal equations 

(5.46) 

(5.47) 

(5.48) 
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where u', vf and h' are assumed to have wave solutions in the form: 

Here s is the zonal wavenumber and σ is the frequency. On substituting (5.49) into 

(5.46)-(5.48), and solving the first two equations, we obtain 

(5.49) 

(5.50) 

(5.51) 

where ω = σ/2Ω is the normalized frequency. On substituting (5.50) and (5.51) into 

(5.48), the Laplace tidal equations can be combined into one differential equation with 

one variable: 

(5.52) 

(5.53) 

where e = 4Ω2a2/gH is Lamb's parameter, and C denotes the linear operator 

From (5.53), one can see that (5.52) presents a cubic equation in ω. Thus, it is deducible 

that there are three classes of wave solutions predicted by the Laplace tidal equations. 

These solutions are traditionally referred to as the westward propagating, and eastward 

propagating waves of the first class, and the westward propagating waves of the second 

class (Margules, 1893; Hough, 1898; Haurwitz, 1940; Dikii, 1966; Longuet-Higgins, 1968). 

Longuet-Higgins (1968) performed a numerical calculation of (5.52) for several different 

choices of Lamb's parameter. In Figure 5.4, we plot the dispersion diagrams for e = 10 

and e = 1000 according to the data listed in Table 5 of Longuet-Higgins (1968). For 

the purpose of comparison with the results of the mixed-balance model, we also adopt 

the eigenvector plots of Longuet-Higgins' corresponding to the eigenvalues of s = 1, 2 for 

n — s = 2 mode of wave class 2 (shown in Figure 5.5). 
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(a) 

(b) 

Figure 5.4: Dispersion diagrams from the Laplace tidal equations. The two panels are 
for two different choices of Lamb's parameter. Plotted according to numerical data by 
Longuet-Higgins (1968). 
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Figure 5.5: Eigenfunctions for waves of the second class from the Laplace tidal equations. 
Left column is for s = 1, and the right for s = 2. 
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(5.54) 

5.2.2 The linear eigenmodes of the mixed-balance model on a sphere 

We now begin to consider a mix-balanced dynamical system on the sphere that has 

been summarized in Table 3.1. In order that the eigensolutions from this mixed-balance 

model are comparable to those of the shallow water primitive equation model discussed in 

the previous section, we assume an adiabatic flow motion ṡ = 0, and a basic state of rest 

with Boussinesq density profiles both in physical and pseudo-physical spaces. This basic 

state is summarized below: 

where the bar quantities denotes the quantities at basic state, p is the density in physical 

space. In a resting basic state, the potential pseudo-density reduces to pseudo-density 

which is a constant determined by the values of pressure and entropy at top and bottom 

of the atmosphere considered. From (3.78), the last two entries in (5.54) imply 

(5.55) 

which indicates that U = V = 0 by referring (3.58)-(3.60). We first linearize the funda-

mental predictive equation (3.73) about the basic state described above. After a few steps 

of manipulations, we obtain 

(5.56) 

The relationship between σ*' and M*' can be found from the invertibility principle (3.77) 

or (3.82a). Before we linearize (3.77), we note that 

(5.57) 

(5.58) 

(5.59) 
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(5.63) 

(5.64) 

by linearizing the formulae of geostrophic longitude and potential latitude. The following 

relations are also useful to note. By the definition of pseudodensity in entropy space, we 

have 

(5.60) 

From the equation of state, pressure p is so related to the Bernoulli function by 

that 

(5.61) 

are true. With all these relations to be noted, we can now linearize the fundamental 

diagnostic equation (3.77): 

which can be written 

(5.62) 

by rearranging terms. It has been pointed out before that u'g, v'g and p' are all related to the 

Bernoulli function M"*/ by gradient, geostrophic balanced equations, and by hydrostatic 

equation and equation of state, respectively. The derivations are briefly shown below. 

From (3.78), we can immediately write down 
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(5.65) 

where n = R/cp. 

Substituting (5.63)-(5.65) into (5.62), we obtain the final form of the linearized in-

vertibility principle: 

(5.66) 

which gives the one-to-one relation between perturbation potential pseudodensity σ*' and 

perturbation Bernoulli function M*'. 

We now combine the predictive equation (5.56) and the diagnostic equation (5.66) 

together to yield 

(5.67) 

where we have denoted To = «/(Rpo) = 1/(
c

PPo)-

We assume that the vertical structure of the fluid motion that we studied is separat-

able from the horizontal one so that the allowable solution of (5.67) takes the form 

(5.69) 

(5.70) 

since ug = vg = 0, and where ƒ = 2ΩsinΦ. From hydrostatic equation and equation of 

state, we have 

so that 

(5.68) 

where a m is the separation constant which will be discussed as we proceed, ST and SB 

are the values of entropy at top and bottom of model domain. 

The substitution of the wave solution (5.68) leads to the meridional structure equation 

where £ denotes the linear operator 
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where u — σ/2Ω, is the normalized frequency. There should be no surprise that (5.70) is 

identical to the result derived by Magnusdottir and Schubert (1991) from semigeostrophic 

theory on the sphere, because in the limit of linearization about a basic state of rest the 

gradient balance reduces to geostrophic balance. Such a limit has the same asymptotic 

property as that in the limit of infinitely small flow curvature. Therefore the reduction 

of the mix-balanced theory developed in Chapter 3 to the semigeostrophic theory on the 

sphere can be expected in such a limit. This is not to say, however, that the mixed-balance 

theory is redundant to the semigeostrophic theory of Magnusdottir and Schubert (1991). 

In the cases of any nonresting basic state, the mixed-balance theory would be expected 

to produce quite different results, presumably better ones, than those by semigeostrophic 

theory, even in the linear context, e.g., the analysis conducted in section 5.1 of this chapter. 

Nevertheless, to complete the study, let us proceed with the current analysis. (5.70) should 

be compared with the meridional operator (5.53) in Laplace's tidal theory discussed in 

previous subsection. The only difference between the two is the neglect of the ω2 factors. 

In the current balanced model, disappearance of this factor is closely related to the filtering 

of the westward and eastward propagating gravity waves. Let us go on to calculate and 

compare the eigenmodes from the two different models to see what the effect is on the 

solutions by this neglect. 

In (5.69), the constant em denotes Lamb's parameter, which is 

where cm = cjam is the phase speed of gravity waves for different vertical modes, and 

c2 = Tqco(St - Sq)2- The separation constant am can be obtained from the linearized 

lower vortical boundary condition, which is in the form 

(5.71) 

(5.72) 

By substituting the wave-form solution (7.68) into this equation, we obtain 

(5.73) 



127 

Figure 5.6: Determination of the separation constant from curves: y = tan x and y = b/x, 
where b = (St - SB)/cp. We choose pT = 22.5 kPa, θT = 333 K, pB = 100 kPa, θB = 287 
K and pQ = 0.8 kgm -3. 
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m=0 1 2 3 4 
"M 0.11987T 1.0148TT 2.0075a- 3.0052x 4.0037TT 

CM 318.9ms"1 37.6ms-1 19.0ms-1 12.7ms-1 9.5ms-1 

CM 8.5 610 2382 5348 9558 

Table 5.6: Computed vertical separation constants, external and internal gravity wave 
phase velocities and Lamb's parameters. 

The solutions of this transcendental equation are the abscissa values of the intersections 

of two curves (shown in Figure 5.6): y = tanx and y — b/x, where b = (St — Sβ)/cp-

In this study we choose pT = 22.5 kPa, θT =333 K, PB=100 kPa, θB =287 K from the 

U.S. Standard Atmosphere, and po = 0.8 kgm - 3 is taken the averaged value of density 

profile in troposphere. With these values, we then have b = 0.1487, c = 120 ms - 1 . The 

computed a m , phase speed cm and Lamb's parameter em for different vertical modes are 

listed in Table 5.6. 

In Longuet-Higgins (1968), the eigensolutions calculated from the shallow water prim-

itive equation model are presented in terms of constant Lamb's parameters with decreasing 

powers of ten. In comparison with Table 5.6, we may approximately regard his solutions 

for c0 = 10 as the external mode, and those for ei = 1000 as the first internal mode, etc. 

For convenience of comparison of our results with the Laplace tidal equation results of 

Longuet-Higgins (1968), let us solve the meridional structure equation (5.69) for eo = 10 

and ei = 1000. Equation (5.69) is first rewritten in the form of a standard eigenvalue 

problem, then discretized in the meridional direction on a uniform grid. The results after 

solving the eigenvalue problem are shown in Table 5.7, along with the corresponded modes 

listed by side from the primitive equation solution of Longuet-Higgins (1968). 

The conclusions from this table are obvious: the balanced model developed in Chapter 

3 filters out all the wave modes but those of Rossby-Haurwitz type, and such a filtered 

model predicts the slow motions that are fairly accurate compared with those by the 

primitive equation model. The balanced mass and winds fields are presented in Figures 

5.7 and 5.8. In comparison with Figure 5.3, we can see that the differences of eigenvectors 

calculated from both models are minor. 
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em = 10(external mode) €m = 103(lst internal mode) 
Balanced PE Balanced PE 

n - s = 2 0.057802 
s 

0.058026 
= 1 

0.006379 0.006397 
n - s = 4 0.028473 0.028377 0.003690 0.003628 

s = 2 
n - s = 2 0.082076 0.082513 0.012533 0.012542 
n - s = 4 0.042925 0.042775 0.007286 

o 
0.007166 

n - s = 2 0.088976 
s 

0.089365 
— o 

0.018179 0.018215 
n - s = 4 0.049915 0.049728 0.010700 0.010529 

s = 4 
n - s = 2 0.088430 0.088704 0.023169 0.023246 
n - s = 4 0.052870 0.052658 0.013862 

c 
0.013649 

n - s = 2 0.084948 
s 

0.085126 
— 0 

0.027408 0.027532 
n — s = 4 0.053619 0.053390 0.016718 0.016472 

Table 5.7: The eigenfrequencies of Rossby-Haurwitz waves computed from the 
mixed-balance model on the sphere are compared with those from Laplace's tidal equations 
(Longuet-Higgins, 1968). 
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Figure 5.7: Eigenfunctions of waves of the second class from the mixed-balance model for 

zonal wavenumber 1. 
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Figure 5.7: Eigenfunctions of waves of the second class from the mixed-balance model for 

zonal wavenumber 1. 



Chapter 6 

THE THEOREMS FOR COMBINED BAROTROPIC A N D BAROCLINIC 

INSTABILITY 

One of the fundamental problems in fluid dynamics is the stability of a basic flow, i.e., 

the transition of a laminar flow to a highly turbulent one. The development of synoptic 

weather systems has been conceived as a dynamical process of this kind. This problem 

was first studied more than a hundred years ago when Rayleigh (1880) discovered that a 

two dimensional incompressible flow can be unstable if the velocity profile of the flow has 

an inflection point. This so-called Rayleigh necessary condition is a well-known theorem 

to meteorologists and oceanographers, and such an instability mechanism is referred to 

as the barotropic instability. Kuo (1949) generalized this result to the case where the 

earth's rotation and geometry are taken into account. Thus, quite similar to Rayleigh's 

theorem, Kuo's condition can be stated as: the necessary condition for a basic flow to be 

unstable is that the gradient of absolute vorticity associated with this flow, β—Uyy, changes 

sign somewhere in the domain. The stability theorem for two dimensional incompressible 

flow under finite-amplitude perturbations was first discovered by the Russian scientist 

Arnol'd (1965, 1966). The idea of this generalized finite amplitude stability theorem is 

crucially dependent upon the fact that there exists a quantity, the so-called "Casimir", 

for the conservative dynamical system of the Ertel-Rossby type that the proper choice 

of the form of such a Casimir leads to a priori convexity estimates of a normed flow 

field. This nonlinear result deals with stability in the sense of Liapunov, i.e., the finite-

amplitude disturbance at an arbitrary time t is bounded by the initial one. This theorem 

was generalized by McIntyre and Shepherd (1987) to a rotating fluid on the β-plane and 

sphere. 
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Charney (1948) introduced the quasi-geostrophic system in which divergence and 

vertical structure of the flow become permissible physics. This theory successfully treats 

atmospheric and oceanic motions with strong baroclinicity, and the baroclinic instability 

comes into the dynamical system as a new instability mechanism. In many realistic phys-

ical situations, of course, flows are not often separable into purely barotropic or purely 

baroclinic. Thus, in 1962 Charney and Stern derived a more general stability criterion 

which combines both the barotropic and baroclinic instability mechanisms. Their condi-

tion for a basic flow with both vertical and horizontal shear to be unstable is that the 

meridional gradient of potential vorticity of the flow either vanishes or changes sign in the 

domain considered. The nonlinear version of this theorem was found in Shepherd (1988, 

1989), which again is a natrual extension of Arnol'd's result so that the stablity criterion 

is in the sense of Liapunov. 

With the development of more sophisticated balanced systems, corresponding stability 

theorems have been investigated to include more physics. Eliassen (1983) generalized 

the Charney-Stern theorem for a set of balanced equations with geostrophic momentum 

approximations (GM). The Charney-Stern theorems associated with the semigeostrophic 

theory on the β-plane and sphere were derived by Magnusdottir and Schubert (1990,1991). 

The approach used in these recent stability analyses is different from that of Charney and 

Stern (1962) in that the fixed structure of the normal modes is not assumed in order to 

derive such a stability theorem. Instead, the Lagrangian concept of particle displacements 

about the mean flow, originally used by Taylor (1915), is adopted. These theorems have 

the same stability arguments as those of Charney and Stern's except for the fact that the 

potential vorticity in Charney and Stern (1962) is the quasi-geostrophic one, while the 

potential vorticity in the stability theorem derived by Eliassen is more of the Ertel's type 

and Magnusdottir and Schubert expressed their theorem in terms of reciprocal of Ertel 

potential vorticity. This is simply due to the fact that GM and SG include more physics 

than QG theory. 

So far we have just discussed the stability theorems associated with balanced dynam-

ics. The disturbances, therefore, are confined to the geostrophic or Rossby wave types. 
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What stability argument can we make if the dynamical system is general enough to con-

tain not only geostrophic disturbances but also disturbances of inertia-gravity type? Such 

a dynamical system is, of course, used in meteorological practice most commonly nowa-

days. Ripa (1983) derived the stability conditions for a shallow water primitive equation 

system on the β-plane and on the sphere, and later he generalized his stability conditions 

to a multi-layer model (Ripa, 1991). His stability condition understandably comprises two 

parts: (1) the products of velocity profile and the meridional gradient of potential vorticity 

is always a nonpositive value; (2) the flow is always in the "subsonic" condition (the Froude 

number F ≤ 1). The first part of this condition is quite similar to the Rayleigh-Fj0rtoft 

argument, thus being conjectured as the condition imposed on Rossby wave disturbances. 

The second part essentially requires a high phase speed of gravity wave propagation, which 

seems to be related to the condition on the nongeostrophic disturbances. A historical sum-

mary of stability theories and their present state of development are given in Table 6.1. 

A noteworthy connection is found between the stability analyses discussed above 

and the theoretical framework of generalized Eliassen-Palm theorems by Andrews and 

Mclntyre (1976, 1978), Andrews (1983), Haynes (1989). The latter category of studies 

showed that for forced or unforced, for linear or nonlinear, for the quasi-geostrophic or 

the primitive equation systems on the ƒ-plane or on the β-plane or on the sphere, one can 

always derive a generalized wave-activity relation in the form: 

(6.1) 

where A is the wave-activity, F is the Eliassen-Palm flux, and 5 is the sources and sinks of 

A. For small-amplitude (or even in certain finite-amplitude circumstances), conservative 

waves, S is effectively zero. The conservation relation then obtained naturally leads to 

the local stability arguments, because in the small-amplitude limit the wave-activity is 

expressed as A ~ ^rjn/Qy, where rj' is particle displacement, Qy is the meridional gradient 

of vorticity (or potential vorticity) of mean flow. If there is no net transport of E-P flux 

across the region considered, then wave-activity is a locally conserved quantity. Thus, for a 

growing disturbance the meridional gradient of vorticity (or PV) must change sign, which 

is exactly the stability statement made in the Rayleigh and Charney-Stern theorems. 
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Dynamics Linear Nonlinear 

Nondivergent 
Rayleigh (2-D incompressible) 1880 
Taylor (2-D incompressible) 1915 
Fj0rtoft 1950 
Kuo (β-plane, sphere) 1949 

Arnol'd 1966 
(2-D incompressible) 

McIntyre k Shepherd 1987 
(/3-plane, sphere) 

Quasi-geostrophic 
Charney & Stern 1962 
(β-plane, sphere) 

Shepherd 1988 
(two-layers ) 
Shepherd 1989 
(continuously stratified) 

Semi-geostrophic 

Eliassen (ƒ-plane) 1983 
Magnusdottir & Schubert 1990 
(βplane) 
Magnusdottir & Schubert 1991 
(sphere) 

? 

Mixed-balance 
present work 
(ƒ-plane) 
present work 
(sphere) 

? 

Primitive equation 
Ripa (shallow water) 1983 
Ripa 1991 
(multiple finite layers) 

? 

Table 6.1: Summary of linear and nonlinear stability theory for various types of dynamical 
systems. Question marks imply no known theory exists. 
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Since our new balanced systems developed in chapter 2 and 3 generalize the ax-

isymmetric and zonally symmetric theories, the eddy motions come into existence in the 

dynamical systems. An important and obvious problem is to determine in what situations 

these eddies can amplify, or in what situations they cannot. Furthermore, the theories 

we proposed are higher order balanced systems than QG and SG in the sense that the 

curvature effect is captured in the dynamics. Therefore, the generalization of stability 

theory for growing disturbances superimposed on highly curved mean flows, the circular 

flow for instance, is by no means physically trivial. Under these considerations, we derive 

stability theorems of the Charney-Stern type for mixed-balance systems on an ƒ-plane 

(section 6.1) and on a sphere (section 6.2). The position of the current work in relation 

to other theoretical stability analyses is shown in Table 6.1. 

6.1 The generalized wave-activity relation and the Charney-Stern theorem 
with the 3-D balanced vortex theory 

The primary governing equations for this section are the predictive equation (2.76) 

and the diagnostic equation (2.80) derived in chapter 2. These two equations coupled 

with their boundary conditions (see Table 2.1) form the basic theoretical framework of 

the mixed-balance system on an ƒ-plane. 

Let us first consider a basic state of axisymmetry (quantities denoted by overbars) 

and a small perturbation (quantities denoted by primes) about such a basic state. We 

also neglect frictional and diabatic effects. A linearized potential pseudodensity equation 

can be derived from (2.76), which gives 

(6.2) 

(6.3) 

Equation (6.2) may also be written in the form 

by introducing the notations D/Dt = ∂/∂T + V ∂ / R ∂ Φ and fu'g = -∂M*'/R∂Φ. V is the 

transformed tangential basic state wind whose definition is given by (2.63) and (2.64). 
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In analogy to Eliassen (1983), let us define the radial geostrophic particle displacement 

n' such that 

(6.7) 

(6.4) 

Since σ* is independent of T and Φ, using this equation we can integrate (6.3) to obtain 

(6.5) 

(6.6) 

Multiplying (6.5) by u'g and taking the azimuthal average, we obtain 

The quantity inside the time derivative of the first term is the linearized wave-activity 

written in terms of potential pseudodensity. The physics depicted by this equation is 

clear: the local time rate of change of wave activity in a circular vortex is determined 

by the net radial transport of potential pseudodensity. We can further change the second 

term in (6.6) into a flux-divergent form, thus expressing (6.6) in the standard wave-activity 

relation of the form (6.1). In order to do this, let us linearize the invertibility principle 

(2.80). We first note that the basic state is axisymmetric, ug — 0, and therefore φ — φ. 

Ea. (2.80) for the basic state can then be written 

Linearizing (2.80) and using (6.7), we have 

Multiplying by fRu'g and then taking the azimuthal average, the third term drops because 

(6.8) 

from the geostrophic azimuth relation (2.56). Rearranging the rest of the terms, we have 
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(6.9) 

(6.10) 

We define the last four terms in this expression as residual R, and calculate this residual 

explicitly as follows: 

where the last two lines have been obtained by using the perturbed geostrophic wind 

relation (2.82), and switching the order of differentiation. It is not difficult to obtain the 

mean and perturbed hydrostatic equations through the standard linearization procedure, 

which gives 
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(6.11) 

(6.12) 

where R is the gas constant, and k = R/cp. From the potential radius formula (2.55), we 

can get 

and 

Linearizing the gradient wind relations, the first entry of (2.82), and using (6.11)-(6.12), 

we obtain the mean and perturbed gradient wind in the forms 

(6.13) 

(6.14) 

On substituting (6.10) and (6.14) into the residual expression, the first and the third terms 

are dropped, yielding 

(6.15) 

Further cancellation in this equation is noted by deriving a mean thermal wind relation. 

Let us take the radial derivative of the mean hydrostatic equation (6.9), take the vertical 

derivative of the mean gradient wind equation (6.13), and combine the resultant equations 

to get 

(6.16) 

(6.17) 

Substituting (6.16) into (6.15), we finally obtain 

With this result, the linearized invertibility principle can be written into a extremely 

simple form: 

(6.18) 

where • = (∂ /∂R , ∂/∂S) is the two dimensional del operator, F is the combined geostro-

phic-and gradient E-P flux on the radial-height plane, taking the form 

(6.19) 
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On substituting (6.18) into the linearized potential pseudodensity equation (6.6), we ob-

tain the generalized wave-activity relation for the mixed-balance system on an ƒ-plane 

developed in chapter 2: 

(6.20) 

For steady flow, (6.20) reduces to the Eliassen-Palm theorem. Conceptually, this equation 

can be used to diagnose the divergence of E-P flux through the local time rate of change of 

wave-activity, and therefore to study wave-mean interaction problem in balanced circular 

vortices. In practice, however, the Lagrangian particle displacement is difficult to calcu-

late. Using the momentum-Casimir or energy-Casimir approach, McIntyre and Shepherd 

(1987) were able to generalize the analogous problem for two dimensional incompressible 

flow to a finite-amplitude disturbance case with wave-activity density expressed in terms 

of Eulerian quantities. They argued that for unifunctional basic flows, this Eulerian form 

of wave-activity density is easily evaluated; for multifunctional basic flows, however, the 

Lagrangian information is still needed to determine such a wave-activity. The generaliza-

tions of this theory to the semigeostrophic and the mixed-balance systems have not been 

completed at this time. 

In order to obtain a stability theorem, we shall integrate (6.20) over the whole model 

domain. Let us first consider the vertical boundary conditions. At the top boundary, 

fluxes vanish since it is an isobaric surface, so that 

(6.21) 

(6.22) 

For lower boundary, let us consider (2.86b): 

which, after using the equation of state and the definition of entropy in the first term and 

taking a radial derivative of the resultant equation, can be written 

(6.23) 
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Note that the radial derivative of the potential radius formula yields ∂vg/∂R = f R / f -

u∂r/∂R, where u> - f + v g / f . Substituting this relation in (6.23) and using gradient wind 

equation, we can prove that 

(6.24) 

Next we consider the perturbation part of the lower boundary condition. Multiplying 

(2.86b) by r2 and linearizing it, we obtain 

Multiplying this equation by ug and then taking an azimuthal average, we may obtain 

(6.25) 

in which we have also used the perturbed hydrostatic equation (6.10) and mean lower 

boundary condition (6.22). The third term in (6.25) vanishes after averaging. Noting the 

perturbed potential radius relation (6.12), we can rewrite (6.25) as 

(6.26) 

Now combining (6.24) and (6.26), we have proved that the E-P flux vanishes at the lower 

boundary, i.e., 

(6.27) 

(6.28) 

For lateral boundary conditions, at vortex center we require 

and for outer boundary condition, we choose RL far enough so that the perturbation radial 

wind also vanishes, i.e., 

(6.29) 

With all these boundary conditions, namely (6.21) and (6.27)-(6.29), we now can integrate 

(6.20) over the radial-height plane, which yields 

(6.30) 
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This, of course, leads to the stability argument as follows: since the integral in (6.30) must 

be constant in time, in order for disturbances to grow in time, i.e., for rj'2 to grow in time, 

the radial gradient of potential pseudodensity at basic state, ∂σ*/∂R, must have both 

signs. Such a dynamical statement can be considered as a generalization of the Charney-

Stern theorem for a three dimensional, balanced vortex motion. Note that in (6.30), ƒ 

is a constant and the independent variable R varies in a non-negative domain. Thus, 

the appearance of these two quantities within the integral will not change the general 

stability argument above. However, such an appearance, specially for the R factor, does 

suggest that our mixed-balance system skews the unstable modes to the far side of vortex 

center. In other words, if the sign of the potential vorticity (or potential pseudodensity 

more precisely) were changed both near the vortex center and at large radius, the mixed-

balance model would more easily pick up the unstable mode associated with the PV 

gradient at large radius than that associated with PV gradient near the vortex center. 

6.2 The generalized wave-activity relation and the Charney-Stern theorem 
with the spherical mixed-balance theory 

In section 6.1, we derived a generalized Eliassen-Palm theorem and a stability theorem 

of the Charney-Stern type for the mixed-balance system on an ƒ-plane. In this section, we 

further generalize these results to full spherical geometry, i.e., we derive the Charney-Stern 

theorem for the mixed-balance system developed in Chapter 3. 

We begin with the mixed-balance system (3.73) and (3.77) (or T3.1 and T3.2 listed in 

Table 3.1). For adiabatic flow, the last term in the potential pseudodensity equation (3.73) 

is dropped. We now consider a steady, zonally symmetric basic state with a vertically and 

horizontally sheared flow so that 

(6.31) 

(6.32) 

It is straightforward to linearize (3.73) about this basic state to obtain 
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Linearizing (3.77) and using (6.37), we have 

We can also write (6.32) in the compact form 

(6.33) 

where VjVt = ∂ / ∂ T + U∂/acosΦ∂A, fv'g = ∂M*'/(a cos Φ∂Λ) and ƒ = 2ΩsinΦ. U is 

the transformed basic state zonal wind whose definition is given in (3.58) and (3.60). 

Let us now define a particle displacement associated with the meridional geostrophic 

velocity as 

(6.34) 

Substituting this definition into (6.33) and integrating the resultant equation over time 

and longitude, we have 

(6.35) 

(6.36) 

Multiplying this equation by v'g and then taking the zonal average, we obtain 

Again, the quantity inside the time derivative is the linearized wave-activity written in 

terms of the inverse of potential vorticity, i.e., the potential pseudodensity normalized by 

the coriolis parameter. The local time rate of change of this wave-activity is clearly related 

to eddy transport of potential pseudodensity by meridional geostrophic disturbances. This 

transport can be represented as the divergence of a flux so that in a global view it has 

no effect on wave-activity. In order to see this, let us linearize the invertibility principle 

(3.77). We first note that the zonally symmetric basic state gives rise to vg = 0, and 

therefore X = Λ by referring to the geostrophic longitude relation (3.51). The basic state 

version of (3.77) can then be written 

(6.37) 



144 

Multiplying by ƒcosΦv'g and then taking a zonal average, the third term disappears 

because 

We define the last four terms in this expression as the residual R, and calculate this 

residual explicitly as follows: 

from the geostrophic longitude coordinate relation (3.51). Rearranging the remaining 

terms and denoting ƒ* = ƒ cosΦ, we have 
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(6.39) 

(6.40) 

(6.41) 

(6.42) 

and 

where the last two lines have been obtained by using the perturbed geostrophic wind 

relation from (3.78), and switching the derivative orders. 

Similar to the previous section, we can derive the mean and perturbed hydrostatic 

equations through the standard linearization procedure, which gives 

where R is the gas constant, and K = R/cp. 

From the potential latitude formula (3.49), we obtain 

With these relations, we can now linearize the gradient wind formula, (3.36) or the second 

entry of (3.78) without any difficulty. The results give the mean and perturbed gradient 

wind relations as 

(6.43) 

(6.44) 

On substituting (6.40) and (6.44) into the residual expression, the second and fourth terms 

disappear, yielding 

(6.45) 

Further simplification of this equation is obtained by deriving a mean thermal wind rela-

tion. Let us take a meridional derivative of the mean hydrostatic equation (6.39), take a 

vertical derivative of the mean gradient wind equation (6.43), and combine the resultant 

equations to obtain 

(6.46) 
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We also note that the linearization of (3.50) yields 

(6.47) 

and 

(6.48) 

(6.51) 

On substituting (6.50) into the linearized potential pseudodensity equation (6.36), we 

obtain the generalized wave-activity relation for the mixed-balance system on the sphere 

developed in chapter 3: 

(6.52) 

so that there is no E-P flux across the top boundary by referring to (6.51). 

Substituting (6.46)-(6.48) into (6.45) and using (6.41) and (6.42), we finally obtain 

(6.49) 

With this result, the linearized invertibility principle can be written into the very simple 

form 

(6.50) 

where • = (∂/a∂Φ, ∂/∂S) is the two dimensional del operator, and F is the combined 

geostrophic-gradient E-P flux in the meridional plane, taking the form 

For steady flow, this equation reduces to the Eliassen-Palm theorem. If the Eulerian 

mean of the particle displacement is somehow obtainable, diagnostic use of this equation 

provides the key step to solve a wave-mean flow interaction problem. 

We shall next integrate (6.52) over the meridional-height plane. Let us first consider 

the vertical boundary conditions. We chose our top boundary as an isobaric surface, which 

implies 

(6.53) 
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For the lower boundary, let us consider the basic-state version of (3.82b), i.e., 

(6.54) 

which, after the using equation of state and the definition of entropy in the first term and 

taking the meridional derivative of the resultant equation, can be written as 

(6.55) 

Note that the meridional derivative of the basic state version of the potential latitude 

formula yields ∂ug/∂φ = — fa cos φ/cosφ — ä>a(sinφ)-1∂cosφ/∂φ, where u> = 2Ωsinφ + 

uatanφ/a. Substituting this relation in (6.55) and using gradient wind equation, we obtain 

(6.56) 

Next we consider the perturbation part of the lower boundary condition. Multiplying 

(3.82b) by cos2 φ and linearizing it, we obtain 

Multiplying this equation by v'g and then taking a zonal average, we obtain 

(6.57) 

in which we have also used the perturbed hydrostatic equation (6.40) and mean lower 

boundary condition (6.54). The third term in (6.57) vanishes after averaging. Using the 

potential radius relation (6.42), we can rewrite (6.57) as 

(6.58) 

Now combining (6.56) and (6.58), we have proved that the E-P flux vanishes at the lower 

boundary, i.e., 

(6.59) 
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For lateral boundary conditions, we consider a channel bounded by two latitudes, and we 

assume that there is no perturbation meridional winds across both meridional walls, i.e., 

(6.60) 

With all these boundary conditions, namely (6.53) and (6.59)-(6.60), we now can integrate 

(6.52) over the meridional plane, which yields 

(6.61) 

This, again, leads to the stability argument as follows: since the integral in (6.61) must be 

constant in time, in order for disturbances to grow in time, i.e., for r?'2 to grow in time, the 

radial gradient of the basic state potential pseudodensity, ∂σ*/a∂φ, must have both signs. 

Such a dynamical statement can be considered as a generalization of the Charney-Stern 

theorem for the three dimensional, mixed-balance system on the sphere. 



Chapter 7 

GENERAL BALANCED DYNAMICS FROM CLEBSCH POTENTIALS 

AND HAMILTON'S PRINCIPLE 

The physical laws for fluid systems such as the atmosphere and ocean, discussed so far, 

are primarily based upon Newtonian mechanics. The beauty of the Newtonian dynamical 

system lies in its simple formulation, accessible to practical calculation and clear physical 

interpretation. Even so, in some theoretical analyses the Newtonian equations have been 

found to be unwieldy and inconvenient to use. In recent years, there has been a growing 

attention to applications of Hamiltonian mechanics to geophysical fluid systems (Benjamin 

1984, Abarbanel et al. 1986, Salmon 1983, 1988, Shepherd 1990). Some progress has 

been made in the following two areas. The first of these applications is stability analysis. 

Fruitful theoretical results have been obtained in nonlinear stability problems, e.g., Arnol'd 

(1965,1966), Abarbanel et al. (1986), McIntyre and Shepherd (1987) and Shepherd (1988, 

1989), and generalization of wave-activity relations, e.g., Haynes (1988). The Casimir 

approach, convexity estimation and Liapunov stability criteria have played important 

roles in this class of studies. In the second class of applications, Hamilton's principle has 

been employed to search for a new set of dynamical governing equations. These studies 

include for example: finding the variable ƒ semigeostrophic equations (Salmon 1985) and 

a planetary semigeostrophic theory (Shutts 1989), generalizing Eliassen's balanced vortex 

model (Craig 1991) and parameterizing geostrophic adjustment (Vallis 1992). The current 

chapter falls into this class of studies. 

Some advantages of using Hamilton's approach to study a mechanical system have 

been cited many times (e.g., Lanczos 1970, Zhou 1978, Salmon 1983, Shepherd 1990). Two 

special advantages are extremely valuable for the second type of studies summarized above. 



150 

First, Hamilton's principle presents a remarkably succinct statement of the dynamics. 

In order to find new governing equations, one may merely concentrate on identifying a 

proper Hamiltonian or Lagrangian, from which all the Eulerian dynamical equations can 

naturally be derived by Hamilton's principle. Secondly, Noether's theorem, associated 

with the symmetries of the Hamiltonian, assures conservation principles for newly derived 

governing dynamical systems as long as the corresponding symmetries in these systems 

are preserved. 

Before proceeding with our analysis, let us first briefly review some very basic concepts 

of Hamiltonian mechanics. We consider a finite-dimensional phase space {(qi,qi)}i=1,...,N 

where qi and are the generalized coordinates and momenta respectively. The Lagrangian 

of the mechanical system is defined as the difference of the kinetic energy and potential 

energy, i.e., 

(7.1) 

where mi- is the mass of the ith particle, V(qi) is the potential energy, and pi is the 

conjugate momentum which is related to the generalized momentum by 

(7.2) 

The Hamiltonian is defined as 

(7.3) 

which represents the total energy of the mechanical system if the kinetic energy is a 

homogeneous function of velocity to the second power (satisfying Euler's theorem). This 

is the case in most physical situations in fluid mechanics. 

Hamilton's principle states that the virtual motion of a mechanical system from time 

T1 to time T2 is such that 

(7.4) 

where δ corresponds to independent variations of p i(r) and q i(r) and the variations at the 

end points are identically zero, i.e., δqi(Τi) = δq,(T2) = 0. 



151 

By simultaneously taking variations of qi and pi it is straightforward to show from 

(7.4) that Hamilton's canonical equations take the form 

(7.5) 

These equations provide important energy and cyclic symmetry properties which will be 

illustrated later. 

In an infinite-dimensional (continuum) system, all the basic concepts discussed above 

for a discrete system are preserved by changing the summation over particles into an inte-

gral over volume. However, when one takes the Eulerian view and insists on a variational 

principle for the Eulerian dynamical system, the foregoing similarity between discrete and 

continuum systems is lost. This has been a long-standing difficulty in applying Hamil-

tonian mechanics to fluid systems since the Eulerian description is preferable in fluid 

dynamics. The solution to this difficulty has been found to be mysteriously related to 

the Clebsch velocity representation and Lin's constraint (Lin, 1963; Seliger and Whitham, 

1968). Seliger and Whitham used these devices to construct a variational principle with a 

somewhat strange form from which an alternative set of Eulerian dynamical equations can 

be derived. Van Saarloos (1981) proved that Seliger and Whitham's variational principle 

for the Eulerian dynamical system can in fact be derived by a canonical transformation 

from the variational principle with Lagrangian description. In this chapter, we focus on 

constructing variational principles with the Lagrangian description, and deriving the New-

tonian dynamical equations from such a traditionally formulated Hamilton's principle. 

Another interesting aspect of the Clebsch velocity representation is that it serves as 

a set of canonical transformation coordinates to transform the hydrodynamical equations. 

By taking account of Lin's particle labeling coordinates, the Clebsch velocity decompozi-

sion is 

(7.6) 

where s is entropy, αj are the Lagrangian coordinates, and X, η and βj are scalar poten-

tials. For quasi-static flows on an isentropic surface, the first and second terms in this 

expression can be combined so that vorticity is introduced only by the third term. Lamb 
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(1932, art. 167) and Schubert and Magnusdottir (1991) showed that this Clebsch repre-

sentation of velocity can be used to transform the Eulerian dynamical equations to their 

canonical forms. 

Following these studies, we show in the first section of this chapter how the Clebsch 

representation (7.6) results from vorticity coordinates, and how it can be used to transform 

the primitive equations of various forms (e.g., the shallow water equations, the quasi-static 

equations on an ƒ-plane and the quasi-static equations on a sphere). In section 7.2, we 

introduce the variational principles for these different forms of primitive equations, and 

then using these variational principles coupled with the Clebsch representation as a set 

of variational constraints, we are able to derive the same canonical equations as those 

obtained in section 7.1. In the final section of this chapter, we extend the approach used 

in section 7.2 to balanced dynamics. In particular, we will first identify the variational 

principles for different balanced models. The approximated variational principle is then 

used, coupled with the reduced form of Clebsch representation, to produce a set of canon-

ical equations in the balanced context. The goal is to shed some light on how a balanced 

model can be constructed in general and what the general structure of a balanced model 

should be. 

7.1 Canonical transformation of the primitive equations by Clebsch poten-
tials 

In this section, we demonstrate that one of the physical interpretations of Clebsch 

potentials is closely related to vorticity coordinates, and two of these Clebsch potentials 

can be used as canonical coordinates to transform the dynamical system to its simplest 

mathematical form. 

7.1.1 The shallow water primitive equations in cartesian coordinates 

The shallow water equations on an ƒ-plane can be written 

(7.7) 

(7.8) 
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(7.9) 

where u and v are the eastward and northward components of the velocity, h is the fluid 

depth, 

(7.10) 

(7.11) 

the total derivative, and 

the absolute vorticity. 

Now consider a transformation from the coordinates (x,y, t) to the new coordinates 

(X,Y,T), where T = t. As with the notation in the previous chapters, the symbol T has 

been introduced to distinguish the time derivative at fixed (X, Y) from the time derivative 

at fixed (x, y). We require the new coordinates to be vorticity coordinates in the sense 

that the Jacobian of (X, Y) with respect to (x,y) is the dimensionless absolute vorticity, 

i.e., 

(7.12) 

If we combine (7.11) and (7.12), the resulting expression can be rearranged into the form 

(7.13) 

Thus, the terms in the first brackets can be expressed as ∂x/∂y and the terms in the 

second brackets by ∂x/∂x, where x is a scalar potential. This results in 

(7.14) 

(7.15) 

Eqs. (7.14) and (7.15) can be regarded as Clebsch representations of the velocity field 

(Lamb 1932, page 248; Seliger and Whitham 1968), i.e., each component of a velocity 

vector can be expressed as the corresponding derivatives of the three scalar potentials Xi 

X and Y. Note the difference between these Clebsch representations and the Helmholtz 
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decomposition of a vector velocity field, where velocity is split into the gradient of velocity 

potential and the curl of streamfunction. One criticism of using the Clebsch representation 

is that the physical interpretations of three scalar potentials are not clear. Here we see that 

the potential x is purely related to the divergent part of the flow, since it vanishes when we 

take the curl of (7.14) and (7.15), as in the case of Helmholtz's decomposition. Part of X 

and Y is related to rotational flow field, indicated by the vorticity definition (7.12). Still, 

parts of X and Y also contribute to the irrotational flow field because the divergence of 

velocity field (7.14) and (7.15) involves not only x but also X and Y. This is the essential 

difference between Helmholtz and Clebsch representations. As in Helmholtz's expression, 

rotational and irrotational flow fields are totally decoupled, while in Clebsch's expression 

the two are connected by the potentials X and Y. In this sense we may regard the 

Clebsch representation as a more general tool than the Helmholtz representation indealing 

with complex flows where linkage can occur between the irrotational and nondivergent 

components of the flow. 

Another interpretation of (7.14) and (7.15), which may further aid the understanding 

of the Clebsch velocity potentials, results from noting that if u — ∂x/∂x and v — ∂x/∂y 

are approximated by their respective geostrophic wind components, and if ∂Y/∂x ss 0, 

∂X/∂x ≈ 1, ∂Y/∂y ≈ 1 and ∂X/∂y ≈ 0, (7.14) and (7.15) in fact reduce to the geostrophic 

coordinates X = x + vg/f and Y — y — u g / f . By this notion, we conjecture that the 

Clebsch representation may serve as a set of canonical coordinates which can be used to 

transform a dynamical equations to their simplest form. Since (7.14) and (7.15) are more 

complicated than the geostrophic coordinates, the dynamical equations to be transformed 

ought to be more general than the system with the geostrophic momentum approximation 

(GM), and this system must be the set of primitive equations (7.7) and (7.8). 

To transform the original momentum equations we now take ∂ /∂ t of (7.14) and (7.15) 

to obtain 

(7.16) 

(7.17) 
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where 

We now use (7.12) and the original equations (7.7) and (7.8) to rewrite (7.16) and (7.17) 

where 

The first entry in (7.21) has been obtained by eliminating DX/Dt between (7.19) and 

(7.20), and the second entry by eliminating DY/Dt between (7.19) and (7.20). Thus, (7.21) 

represents the canonical shallow water equations transformed by the Clebsch velocity 

potential relation (7.14) and (7.15), and it presents a pair of geostrophic relations between 

the transformed winds U, V and the hyper-height H. The terminology "hyper-height" 

used here simply restates the fact that given in (7.18), Η is not just the physical height or 

Bernoulli height. It is the height which is further modified by a local time rate of change 

of the Clebsch potentials. From (7.18) and (7.21), one can see how the balanced dynamics 

derives from this generalized geostrophic balance relation. For quasi-geostrophic theory, 

the balance is achieved between the winds and the gradient of the first term on the right 

hand side of (7.18); for semigeostrophic theory, the balance is between the transformed 

winds and the gradient of the first term plus the geostrophic version of second term (or 

mixed geostrophic and gradient version of second term for mixed balanced theory). For 

unfiltered primitive equations, like (7.7)-(7.9), (7.21) no longer serves as a pure diagnostic 

relation between winds and pressure due to the transient information entering into this 

balanced relation. 

(7.21) 

(7.22) 

Together (7.19) and (7.20) imply that 

(7.19) 

(7.20) 

as 

(7.18) 
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We can easily show that (7.10) can also be written in (X,Y, T) space as 

(7.23) 

The advantage of (7.23) over (7.10) is that the horizontal advecting velocity is expressed in 

terms of derivatives of H by (7.21), which are mathematically analogous to the geostrophic 

formulas. 

The governing equation for the absolute vorticity can be derived from (7.7) and (7.8). 

It takes the form 

(7.24) 

(7.25) 

Eliminating the divergence between (7.9) and (7.24) we obtain 

where P = Ϛ/h is the potential vorticity. Following the approach in Chapter 5, let us 

define the potential height as 

(7.26) 

which indicates that the potential vorticity and the potential height are related by Ph* = 

ƒ, so that the potential height equation is 

(7.27) 

One should recall (e.g., Chapters 2 and 3) that in the case of balanced dynamics, (7.26) 

and (7.27) form a closed system, and this system represents the simplest mathematical 

formulation with one predictive equation and one invertibility principle. For the primitive 

equation model, however, due to the lack of a balance relation between the wind field Ϛ 

and the mass field h, (7.26) is uninvertable so that (2.26) and (2.27) do not form a closed 

system. Nevertheless, the foregoing Clebsch transformation points out a quite general way 

of thinking about balanced dynamics and how to obtain the simplest dynamical structure 

of a balanced model. 
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7.1.2 The quasi-static primitive equations in cylindrical coordinates 

We now generalize the results obtained in the previous subsection to a fully stratified 

atmosphere. We also proceed in a cylindrical coordinate system in order to compare the 

results with the discussion in Chapter 2. 

Using the entropy s as the vertical coordinate, we can write the quasi-static primitive 

equations on an ƒ-plane as 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

with standard notations similar to those defined previously. Here the total derivative 

operator is 

(7.32) 

(7.33) 

and the three components of isentropic absolute vorticity are 

We shall now switch from the coordinates (r, φ, s, t) to the coordinates (R, Φ, S, T), where 

S = s and T = t. The symbols S and T are introduced to distinguish derivatives at fixed 

(R, Φ) from derivatives at fixed (r, φ). We require the new coordinates to be vorticity 

coordinates in the sense that 

(7.34) 

If we combine the third entries of (7.33) and (7.34), we obtain 

which can be rearranged into the form 
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(7.35) 

Thus, the terms in the first brackets can be expressed as ∂x/∂φ and the terms in the 

second bracket as ∂x/∂ r , where x is a scalar potential. This results in 

(7.36) 

(7.37) 

Using (7.36) and (7.37) we can show that the first two entries of (7.34) are satisfied if 

(7.38) 

Equations (7.36)-(7.38) can be regarded as a Clebsch representation of the velocity field 

(Lamb 1932, page 248; Seliger and Whitham 1968). Compared with the shallow water ver-

sion of this representation derived in the previous subsection, we have one more equation 

which is supposedly for the vertical component of velocity in the current stratified case. 

The zero on the left hand side (7.38), instead of the vertical velocity, is due to the fact that 

in the quasi-static system only the horizontal components of velocity appear in the right 

hand side of (7.33). In a more general nonhydrostatic argument (in the z-coordinate) the 

vertical velocity would contribute to the first two vorticity components in (7.33) and then 

would also appear on the left hand side of (7.38). Seliger and Whitham (1968) discuss 

how such Clebsch representations arise from variational principles. The zero on the left 

hand side of (7.38) can then be understood in terms of the neglect of the contribution of 

vertical motion to the kinetic energy in the Lagrangian for the quasi-static equations. 

The physical interpretation of the three scalar potentials x> R and Φ can be drawn in 

terms of the vorticity coordinates as discussed previously. There are two special cases of 

(7.36) and (7.37). First, when the flow is axisymmetric, i.e., ∂x/∂φ = 0, ∂R/∂φ = 0, and 

∂Φ/∂φ = 1, then (7.37) reduces to 1 / 2 f R 2 = \fr2 + rv. Since the right hand side of this 

expression is the absolute angular momentum per unit mass, in the axisymmetric case R 

is just an angular momentum coordinate and represents the radius to which a fluid parcel 

must be moved in order to change its tangential velocity to zero. This potential radius 
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Using (7.34) and the original momentum equations (7.28)-(7.30) we rewrite (7.39)-(7.41) 

as 

where 

coordinate has been used by Schubert and Hack (1983) and Schubert and Alworth (1987) 

in studies of axisymmetric balanced tropical cyclones. In the second case, we approximate 

u - ∂x/∂r as geostrophic wind and v - ∂x/∂φ by the gradient wind, and if ∂Φ/∂r ≈ 0, 

∂R/∂φ ≈ 0, ∂R/∂r ≈ 1 and ∂Φ/∂φ ≈ 1 with R is not much different from r, (7.36) and 

(7.37) reduce to the set of combined geostrophic azimuth and potential radius coordinates, 

which has been used in Chapters 2 and 5. This suggests that (7.36) and (7.37) themselves 

are a set of generalized canonical coordinates, which may be used to transform a general 

dynamical system like (7.28)-(7.31). 

To transform the original primitive equations (7.28)-(7.30) we now take ∂/∂t of 

(7.36)-(7.38) to obtain 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

where 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

Together (7.43)-(7.45) imply that 
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The first entry in (7.46) has been obtained by eliminating DΦ/Dt between (7.43) and 

(7.44), the second entry by eliminating DR/Dt between (7.43) and (7.44), and the third 

entry by substituting the first two into (7.45). Thus, (7.46) represents the canonical quasi-

static primitive equations transformed by Clebsch potentials (7.36)-(7.38), and it formally 

presents a pair of geostrophic relations and a hydrostatic relation. 

The governing equation for the isentropic absolute vorticity can be derived from (7.28) 

and (7.29). It takes the form 

(7.48) 

(7.49) 

Eliminating the divergence between (7.31) and (7.48) we obtain 

where P = Ϛ/σ is the Rossby-Ertel potential vorticity, and the total derivative operator 

can be written in (R, Φ, S, T) space as 

(7.50) 

Following the approach in Chapter 2, we now define the potential pseudodensity as 

(7.51) 

which relates to the potential vorticity by Pσ* = ƒ, so that we can write the predictive 

equation for potential pseudodensity in the form 

(7.52) 

Again, for balanced dynamics, (7.51) and (7.52) would form the simplest mathematical 

model. 

7,1.3 The primitive equations in spherical coordinates 

In the final part of this section, we will consider the most general case: a fully stratified 

fluid on a rotating sphere. The governing equations for this fluid motion can be written 

(7.53) 
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(7.63) 

(7.54) 

(7.55) 

(7.56) 

All the notation is standard and can be found in Chapter 3. The total derivative is in the 

form 

(7.57) 

(7.58) 

and the three components of isentropic absolute vorticity are 

Let us now transform this dynamical system from (Λ,φ, s,t) space to (Λ, Φ,S,T) space. 

We require the new coordinates to be vorticity coordinates in the sense that 

(7.59) 

If we combine the third entries of (7.58) and (7.59), we obtain 

which can be rearranged into the form 

(7.60) 

Thus, the terms in first brackets can be expressed as ∂x/a∂φ and the terms in second 

brackets as ∂x/a∂X, where x is a scalar potential. This results in 

(7.61) 

(7.62) 

Using (7.61) and (7.62) we can show that the first two entries of (7.59) are satisfied if 
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Equations (7.61)-(7.63) again constitute Clebsch representations of the velocity field. The 

zero on the left hand side of (7.63) is due to the quasi-static approximation made in the 

original governing equations, which has been discussed in the previous subsection. 

Several special cases are noted from (7.61) and (7.62). (1) When the flow is zonally 

symmetric (i.e., ∂x/∂λ = 0, ∂Φ/∂λ = 0 and ∂Λ/∂λ = 1), (7.61) reduces to Ωasin2Φ = 

of which is the absolute angular momentum per unit mass. Thus, in the zonally symmetric 

case, Φ is an angular momentum coordinate and represents the latitude to which a parcel 

must be moved in order to change its zonal velocity to zero. This potential latitude 

coordinate has proved useful in studies of the ITCZ and the Hadley circulation (Hack 

et a1. 1989, Schubert et al. 1991). (2) When we approximate sin2 Φ ≈ sin2φ in (7.62) 

and Λ ≈ λ in (7.61), and if u — ∂x/α cos φ∂λ is defined as the gradient zonal wind and 
v — ∂x/α∂φ is defined as the geostrophic meridional wind, (7.61) and (7.62) reduce to 

potential latitude and geostrophic longitude coordinates respectively discussed in Chapter 

3 [(3.50) and (3.51)]. This coordinate set is crucial in constructing the mixed geostrophic 

gradient balanced theory. (3) With the approximations made in (2), we further assume 

that sin Φ ≈ sin φ in (7.61), and define u — ∂x/acosφ∂λ as the geostrophic zonal wind. 

(7.61) and (7.62) then reduce to a pair of generalized geostrophic coordinates, which has 

been used by Magnusdottir and Schubert (1991) to construct semigeostrophic theory on 

the sphere. 

Let us now use (7.61)-(7.63) to transform the original primitive equations (7.53)-

(7.55). The procedures are exactly the same as before. We take ∂ /∂ t of (7.61)-(7.63), 

which yields 

Ωa sin2 φ — u cos φ, or equivalently Ωa2 cos2 Φ = Ωa2 cos2 φ + ua cos φ, the right hand side 

+ 

+ 

+ (7.64) 

(7.65) 

(7.66) 

where 

(7.67) 
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Using (7.59) and the original momentum equations (7.53)-(7.55) we rewrite (7.64)-(7.66) 

as 

(7.68) 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

Together (7.68)-(7.70) imply that 

where 

The first entry in (7.71) has been obtained by eliminating DA/Dt between (7.68) and 

(7.69), and the second entry by eliminating Dφ/Dt between (7.68) and (7.69), and the 

third entry by substituting the first two into (7.70). Thus, (7.71) represents the canonical 

quasi-static primitive equations transformed by Clebsch velocity potentials (7.61)-(7.63), 

and it formally resembles a pair of geostrophic relations and a hydrostatic balanced rela-

tion. 

The governing equation for the isentropic absolute vorticity can be derived from (7.53) 

and (7.54), or equivalently from (7.71) and (7.72). In either case it takes the form 

(7.73) 

(7.74) 

Eliminating the divergence between (7.56) and (7.73) we obtain 

where P = Ϛ/σ is the Rossby-Ertel potential vorticity. The total derivative operator can 

be written in (A,Φ,S,T) space as 

(7.75) 
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Following the approach in Chapter 3, we now define the potential pseudodensity as 

(7.76) 

The potential vorticity and the potential pseudodensity are related by Pσ* = 2Ω sin Φ. 

The potential pseudodensity equation can be easily obtained from the potential vorticity 

equation (7.74), and its flux form is particularly convenient. With D/Dt given by (7.75), 

this flux form can be written 

(7.77) 

Again, for balanced dynamics, (7.76) and (7.77) would form the simplest mathematical 

model. 

7.2 Hamiltonian structure of the primitive equations and their canonical 
transformation 

In the last section we have shown that the Clebsch potentials are related to a set 

of vorticity coordinates which can be used to transform dynamical equations of Eulerian 

form to their simplest mathematical form. We now introduce this idea to the Hamiltonian 

systems associated with the primitive equation models discussed above. We first identify 

the variational principles for the primitive equation systems by deriving the set of Eu-

lerian equations from such principles, and then demonstrate how conservation principles 

are associated with the symmetries of the Lagrangians. Finally, we conduct independent 

variations in the transformed phase space with Clebsch representation as a set of con-

straints. Such operations surprisingly lead to the canonical equations obtained in the 

previous section, suggesting a general way to construct a new dynamical system from a 

proper Hamilton principle with corresponding Clebsch potentials. 

7.2.1 The shallow water primitive equations in cartesian coordinates 

Following the Lagrangian description, the position of a fluid particle is determined 

by its labeling coordinates x0, y0 and time r , i.e., 
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where 

At time r , the mass of a marked fluid parcel is related to its initial mass by 

(7.78) 

(7.79) 

which can be written in the Jacobian form 

where p is the constant fluid density, h0 and h are the fluid surface heights at the initial 

time and at time r respectively. 

The time rate of change of (7.79) is as follows 

where the first term on the right hand side of this expression is 

and similarly the second term is 

Combining all these results, we have 

(7.80) 

Note that in the Lagrangian system, the time rate of change is in the sense of following the 

particle motion. Hereafter we use the notation ∂ /∂ r = D/Dt as the total time derivative, 

and ∂ /∂ t as the local time derivative. Therefore, we have derived the mass continuity 

eqation (7.80) through the Lagrangian particle labeling system. 

Following Salmon (1983,1985), we define the Lagrangian for the shallow water prim-

itive system as 

(7.81) 

(7.82) 
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(7.84) 

where ƒ = 2Ω. Similarly, the variation in y is 

so that the principle governing the fluid motion in a shallow water system on an ƒ-plane 

can be stated as 

(7.83) 

We can prove that (7.81)—(7.83) form the correct Hamilton principle for the shallow water 

primitive equation model (7.7)-(7.9). To see this, let us calculate (7.83) by taking the 

independent variation δx = (δx,δy) of it, which yields 

where dS0 = dx0dy0 stands for the area integral-element. The second line is obtained 

using integration by parts with vanishing of variations at endpoints. Since the variation 

δx is arbitrary, the terms inside the brackets must be zero, which gives 

which yields 

(7.85) 

Collecting (7.80), (7.84) and (7.85), we have derived the shallow water primitive equation 

system from Hamilton's principle (7.81)-(7.83). 

The variation of (7.81) in the other two coordinates of phase space yields 
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which just gives the definition of u-velocity: u = ∂X/∂T. Similarly, δv of (7.81) will give 

the definition of u-velocity: v = ∂y/∂r. 

We next discuss how the conservation principles result from the governing equations 

(7.81)-(7.83). We first note that the Hamiltonian, the total energy of the system, is a 

function in phase space such that II = H(x, y, u, v,t). Simultaneously taking variations 

δx, δy, δu, δv and δt of (7.81), we have 

where H* stands for the integrand of II, which is the sum of the kinetic energy and surface 

potential energy per unit mass. That the variations are independent and arbitrary leads 

to the following canonical equations: 

On substituting these relations into the total derivative of the Hamiltonian, 

one obtains a statement of energy conservation: 

(7.86) 

From this derivation we see that the existence of an energy invariant is closely related to 

the symmetries in the Hamiltonian structure and the fact that time does not explicitly 

appear in the Hamiltonian. 

Salmon (1983) points out that the conservation of potential vorticity in a Hamiltonian 

system is due to the existence of a special kind of symmetry, the so called "particle 

relabeling symmetry", in the flow field. Let us take variations of (7.81)-(7.83) in the 

labeling coordinates, i.e., δ (x 0 , y 0 ) , while holding (x, y) fixed. In so doing, we have 

(7.87) 
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leads to 

(7.88) 

(7.89) 

(7.90) 

(7.91) 

which indicates that the potential vorticity is conserved on particles. 

We now consider a phase space that is spanned by two physical coordinates (x, y) and 

two Clebsch potentials (X, Y). In the previous section we have shown that X and Y are 

in fact the two vorticity coordinates, and the Eulerian form of the primitive equations can 

be transformed to the simplest form by such coordinates. Since the horizontal velocity 

field can be expressed by these potentials, we may take the independent variations of 

(7.81)-(7.83) in X and Y subject to the constraints (7.14) and (7.15). Let us first write 

the Lagrangian (7.81) in the form 

Using the chain rule, we can prove the following relations: 

The variation of (7.79) in the labeling coordinates, i.e., 

Substituting in (7.88)-(7.90), (7.87) becomes 

Then due to the arbitrariness of δѱ, we obtain 
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(7.92) 

(7.93) 

(7.94) 

(7.95) 

(7.96) 

(7.97) 

which leads to 

(7.98) 

where H is defined in (7.18). 

We then take a variation δX of (7.14) and (7.15), resulting in 

Using these two relations and taking the variation of (7.92), we have 

which leads to 

by using the continuity equation. 

Similarly, when we take a variation δY of (7.14) and (7.15), we get 

and therefore the variation of (7.92) can be calculated as 
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Equations (7.95) and (7.98) are the main results for this subsection, and they should be 

compared with (7.21) of the previous section. The idea that we are trying to illustrate 

here is that from a variational principle in the Lagrangian description plus Clebsch rep-

resentations of velocity, we can obtain a set of canonical momentum equations that are 

identical to those obtained by directly transforming the Eulerian equations using Clebsch 

representations. 

7.2.2 The quasi-static primitive equations in cylindrical coordinates 

For the fully stratified fluid system there is one more dimension added to the problem 

so that the position of fluid parcel is, in the cylindrical coordinates, 

and the mass continuity can be expressed as 

(7.99) 

(7.100) 

which can be written in the Jacobian form 

where σ and σo are the pseudodensity at time r and at the initial time, respectively. In 

the z-coordinate system, the proper form of (7.100) is 

(7.101) 

(7.102) 

where p and po a r e the corresponding densities. 

Taking time rate of change of (7.100), we have 

which gives the Eulerian form of the mass continuity equation: 

where ∂ / ∂ r = D/Dt is the time derivative following the motion of a fluid particle in the 

Lagrangian system. 
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The Lagrangian for the quasi-static primitive equations in a cylindrical coordinate 

system can be written as 

where the Hamiltonian is 

(7.103) 

(7.104) 

From (7.104) we see that H consists of kinetic, internal and potential energy. However, 

for the quasi-static primitive equations, the kinetic energy associated with the vertical 

component of velocity is neglected, which accounts for the fact that the zero occurs on the 

left hand side of (7.38) for the third component of Clebsch velocity representation. The 

internal energy E is associated with the thermodynamic processes of the system. Thus, 

E is a function of entropy s and the positions of the fluid parcel implicit in the specific 

volume α through (7.101). Here we expressed (7.103) and (7.104) in the z-coordinate 

for convenience of the discussions below. One can also write (7.103) and (7.104) in the 

s-coordinate, in which case H can be expressed as the Montgomery potential plus the 

kinetic energy with the mass-integral element changed to σorodφodso. 

To prove that (7.103) and (7.104) form the correct variational principle for the quasi-

static primitive equations, we take independent variations of this system. 

where dΩ0 = r0dr0dφodz0 is the volume-integral element. The last line is obtained 

through integration by parts and the use of Maxwell's equation of thermodynamics, 

p = ~(∂E/∂a)s. Hence, the arbitrariness of δr implies that the integrand must van-

ish, giving 

(7.105) 
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(7.106) 

(7.107) 

This yields the quasi-static balanced relation 

(7.108) 

(7.109) 

In a similar fashion, we can show that variations δu and δv give the definitions of horizontal 

components of velocity: u = ∂ r / ∂ r and v = r∂φ/∂r . 

The conservation principles are easily identified from (7.103) and (7.104) by their 

symmetry properties. In order to see conservation of energy, we note that H = 

H(r,φ,s,u,v,t), and then take the variations in its independent variables, to obtain 

where the last term in this expression can be rewritten as 

With this result, (7.105) becomes 

Similarly, the variation δφ of (7.103) and (7.104) gives 

The variation in z component is also very straightforward: 

Then the proper form of (7.108) in the s-coordinate is 
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where we have used the notation H* to denote the integrand of H, which is the total 

energy per unit mass. Integrating by parts and grouping terms with the same variation, 

we get the following canonical equations: 

which, when substituted into the expression for total derivative of H*, result in 

(7.110) 

This is the statement of energy conservation. 

If the flow is axisymmetric, then the Hamiltonian is independent of φ. In this case, 

according to the second equation in (7.5), the corresponding momentum is an invariant, 

i.e., pφ = const., which can be computed from (7.2). It gives 

(7.111) 

which is the statement of angular momentum conservation corresponding to (2.14) for 

axisymmetric flow. 

The potential vorticity conservation is related to the particle relabeling symmetry 

(Salmon, 1983). Let us take the variations of (7.103) in the particle labeling coordinates 

(r0, φo, s0) while holding (r, φ, s) fixed. Noting the vertical velocity is absent in the La-

grangian for the quasi-static primitive system, we then have 

(7.112) 

(7.113) 

(7.114) 

where it is not difficult to show that 
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For adiabatic flow, s = so, so that (7.100) reduces to σ0/σ = ∂(±r2,φ)/∂(±rg,φ0). By 

taking the variation of this expression in the labeling coordinates, we obtain 

(7.115) 

Using (7.113)—(7.115), (7.112) becomes 

(7.116) 

This is, of course, Ertel's theorem in the cylindrical coordinate system, which is equivalent 

to (2.29) for an adiabatic flow, as derived in Chapter 2. 

We shall next consider variations in transformed phase space, the components of 

which are the Clebsch potentials R and Φ. Equations (7.36) and (7.37) are used as a set 

of constraints during the variations. We can rewrite the Lagrangian (7.103) in the form 

(7.117) 

where M is defined in (7.42). Note that (7.117) is exactly the same as (7.103) when 

(7.103) is written in the s-coordinate. 

The variations of (7.36) and (7.37) in R are 

(7.118) 

which yields, due to the arbitrariness of δφ, 
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which leads to 

which leads to 

Again, equations (7.120) and (7.123) are the main results of this subsection, and they 

should be compared with the first two entries of (7.46) of the previous section. 

(7.123) 

and therefore the variation of (7.117) can be calculated as 

(7.121) 

(7.122) 

by using the continuity equation. 

Similarly, when we take the variation δΦ of (7.36) and (7.37) we get 

(7.120) 

Using these two relations and taking the variation of (7.117), we have 

(7.119) 
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(7.124) 

(7.125) 

(7.126) 

(7.127) 

where ∂ / ∂ r = D/Dt is the time derivative following the motion of a fluid particle in the 

Lagrangian system. 

The Lagrangian for the quasi-static primitive equations in a spherical coordinate 

system can be written as 

where the Hamiltonian is 

(7.128) 

(7.129) 

which gives the Eulerian form of the mass continuity equation: 

where p and p0 are the corresponding densities. 

Taking time rate of change of (7.125), we have 

where σ and σ0 are the pseudodensity at time r and at the initial time, respectively. In 

the z-coordinate system, the proper form of (7.125) is 

which can be written in the Jacobian form 

The mass continuity can be expressed as 

7.2.3 The quasi-static primitive equations in spherical coordinates 

We now extend the ƒ-plane results obtained in the previous two subsections to the 

full spherical case, where the coordinates in Lagrangian system are 
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Note that H consists of kinetic, internal and potential energy, and that the kinetic energy 

associated with vertical velocity is omitted. This approximation is responsible for the fact 

that a zero appears on the left hand side of (7.63) for the third component of the Clebsch 

representation. The internal energy E is associated with the thermodynamic processes 

of the system. Thus, E is a function of entropy s and the positions of the fluid parcel 

implicit in the specific volume α through (7.126). Here (7.128) and (7.129) are formulated 

in z-coordinate. They can also be written in s-coordinate in which case H is expressed as 

the Montgomery potential plus the kinetic energy with the mass integral-element changed 

to σ0a2 cos φQd\Qdφ0ds0. Both formulations will be used in the following discussions for 

convenience. 

To prove that (7.128) and (7.129) form the correct variational principle for the quasi-

static primitive equations on the sphere, we take independent variations of this system. 

where dΩ0 = a2 cos φ0dλ0dφ0ds0 is the volume-integral element. The last line is ob-

tained through integration by parts and using Maxwell's equation of thermodynamics, 

p = -(∂E/∂a)s. Hence, the arbitrariness of δA implies that the integrand must vanish, 

giving 

(7.130) 

where the last term in this expression can be rewritten as 

With this result , (7.130) becomes 

(7.131) 
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Similarly, the variation δφ of (7.128) and (7.129) gives 

(7.132) 

The variation in z component is 

which yields the quasi-static relation 

(7.133) 

If (7.133) is written in s-coordinate, it takes the form 

The variations δu and δv give the definitions of horizontal components of velocity: u = 

a cos φ∂λ /∂ r and v = a∂φ/∂ r . Now collecting (7.127), (7.131), (7.132) and (7.134), we 

have derived the complete set of quasi-static primitive equations on the sphere from the 

Lagrangian (7.128). 

The conservation principles are easily identified from (7.128) and (7.129) through the 

symmetry properties of the Hamiltonian. In order to see the conservation of energy, we 

note that H = # ( λ , φ , s,u, v,t), and then take the variations in its independent variables 

to obtain 

where H* is the integrand of H, which stands for the total energy per unit mass. Integrat-

ing by parts and grouping terms with the same variation, we get the following canonical 

equations: 

(7.134) 



179 

This is the statement of energy conservation. 

If the flow is zonally symmetric, then the Hamiltonian is independent of A. In this case, 

according to the second equation in (7.5), the corresponding momentum is an invariant, 

i.e., pλ = const., which can be computed from (7.2). It gives 

(7.136) 

which is the statement of angular momentum conservation corresponding to (3.41) for 

zonally symmetric flow. 

The potential vorticity conservation is related to the particle relabeling symmetry 

(Salmon, 1983). Let us take the variations of (7.128) in the particle labeling coordinates 

(λ0, φ0,s0) while holding (r,φ, s) fixed. Noting the vertical velocity is absent in the La-

grangian for the quasi-static primitive system, we have 

(7.137) 

(7.138) 

(7.139) 

It is not difficult to show that 

For adiabatic flow, s = s0, so that (7.125) reduces to σ 0 / σ = ∂ ( λ , s i n φ ) / ∂ ( λ 0 , sinφ0). By 

taking the variation of this expression in the labeling coordinates, we obtain 

(7.140) 

(7.135) 

which, when substituted into the expression for total derivative of H*, result in 
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(7.141) 

This is, of course, Rossby-Ertel's theorem in the spherical coordinate system, which is 

equivalent to (3.27) for an adiabatic flow derived in Chapter 3. 

We shall next consider variations in transformed space, two components of which 

are the Clebsch potentials Λ and Φ. Equations (7.61) and (7.62) are used as a set of 

constriants during the variations. We can rewrite the Lagrangian (7.128) in the form 

(7.142) 

(7.143) 

(7.144) 

Substituting in (7.138)-(7.140), (7.137) becomes 

which yields, due to the arbitrariness of δѱ, 

where M is defined in (7.67). 

The variations δR of (7.61) and (7.62) are 

Using these two relations and taking the variation of (7.142), we have 
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which leads to 

(7.145) 

(7.146) 

(7.147) 

which leads to 

by using the continuity equation. 

Similarly, when we take the variation δΦ of (7.61) and (7.62) we get 

and therefore the variation of (7.142) can be calculated as 

(7.148) 

Again, equations (7.145) and (7.148) are the main results for this subsection, and they 

should be compared with the first two entries of (7.71) of the previous section. 
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7.3 Balanced dynamics from a simplified Hamilton's principle and Clebsch 
potentials 

In some balanced dynamical models such as the semigeostrophic theory (Hoskins, 

1975; Hoskins and Draghici, 1977; Schubert et al., 1989; Magnusdottir and Schubert, 

1990, 1991), the symmetric balanced theories (Schubert and Hack, 1983; Schubert and 

Alworth, 1987; Hack et al., 1989; Schubert et al., 1991) and the mixed balanced theory 

(the current work, Chapters 2 and 3), the geostrophic coordinates, the potential radius and 

potential latitude are introduced primarily as mathematical devices. Utilization of these 

mathematical tools leads to simplified dynamics which are formally similar to the quasi-

geostrophic dynamics. In section 7.1 we have shown that these devices may be regarded 

as simplified Clebsch velocity decompositions. While the general form of the Clebsch 

representation can be used to transform the full variational principle to its potential phase 

space, from which the canonical momentum equations corresponding to the primitive 

equations are derivable, one may question whether such a methodology is carried through 

in balanced dynamics. In this section, we identify the variational principles for several 

balanced models, especially for the models developed in Chapters 2 and 3, by making 

approximations in the full Lagrangian, and then transform these variational principles to 

their potential phase space by using simplified Clebsch velocity potentials. The variations 

of these transformed Hamilton principles lead to the canonical momentum equations for 

different balanced models. 

7.3.1 The Hamilton principle and Clebsch transformation associated with the 
semigeostrophic shallow water equations 

When we partition the total flow field into geostrophic and ageostrophic flows, i.e., 

(7.149) 

we may assume that the deviation of the flow field from geostrophy is small. This smallness 

is denoted by a small parameter e in (7.149). It is arguable, however, that this assumption 

may not be valid in situations where strong convection and Ekman layers are considered. 

We note that in the formal development of balanced theories, especially those derived 
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through scale analysis (e.g., McWilliams and Gent, 1980), much weaker conditions are 

needed. 

Under assumption (7.149), the Lagrangian (7.81) can be written 

where 

where dS0 = dx0dy0 is the area-integral element. Because we have already made 0(e) 

approximations in the Lagrangian, we are not afraid to put the last two terms inside the 

brackets, in position to be neglected since they are also 0(e) terms. Thus, the variation 

δx of the modified Hamilton principle yields 

(7.152) 

(7.153) 

where ƒ = 2Ω. Similarly, the variation in y gives 

is the modified Hamiltonian. Equation (7.150) without the 0(e) term was considered by 

Salmon (1985), who reared to it as L1 dynamics. 

Since ug and vg are geostrophic winds, they are functions of particle locations even 

under the Lagrangian description. Coupled with (x,y), they form a distorted phase space 

whose projection is the true phase space. We now take the variations of (7.150) in (x, y). 

For δx: 

(7.150) 

(7.151) 
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The foregoing approximation in the Lagrangian does not affect the mass continuity argue-

ment so that we still have the mass continuity equation expressed in the Jacobian form 

(7.79) whose total time derivative will give 

It is obvious that we have derived the set of GM equations (7.152)-(7.154) from an ap-

proximated Hamilton principle. Since the particle relabeling symmetry and the time 

translation property in the Hamiltonian are preserved, the potential vorticity and energy 

invariants for such an approximate system are guaranteed by Noether's theorem. One can 

prove these simply by going through exactly the same procedures as we did in the previous 

section for the primitive system. 

Our next task is to show that the reduced form of Clebsch representation of velocity, 

i.e., the geostrophic coordinates, coupled with the simplified Hamilton principle will result 

in a variational principle in transformed space whose variations with respect to transformed 

coordinates will lead to the canonical momentum equations. These canonical equations 

form the basis of semigeostrophic theory. 

We denote the set of reduced Clebsch velocity potentials associated with the vorticity 

coordinates as 

When F = vg/f and G — —ug/f, (7.155) expresses the exact geostrophic coordinates. 

Following Salmon (1985), the transformation of (7.150) from (x,y) space to (X, Y) 

space is done inversely, i.e., 

(7.154) 

(7.155) 
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where we need to make the following remarks in order for this transformation to be carried 

through: (1) the exact differentiation terms δ( •) vanish due to the stationary property of 

endpoints when full variation is concerned; (2) here 0(R2
0fL2) stands for quadratic terms 

in F and G, where R0 is the Rossby number and L is the characteristic length scale. The 

last line in this expression yields L1 dynamics plus this quadratic term. Therefore we can 

write the transformed Hamilton principle as 

(7.156) 

where H is defined in (7.151). 

We now take variations of (7.156) in transformed space, which yields 

Salmon (1985) has proved that the functional derivatives ∂H/∂X = g∂H/∂X and ∂H/∂Y 

= g∂H/∂Y where gH = gh + \(u2
g + v2). Therefore, the variations lead to 

(7.157) 

(7.158) 

Equations (7.157) and (7.158) are the canonical forms of momentum equations (7.152) and 

(7.153). These canonical equations are similar to what we have obtained in the previous 

sections, e.g., (7.21), (7.95) and (7.98), with the essential difference in the definition of H. 

To complete this balanced model, one need only note that the vorticity equation can 

be derived from (7.157) and (7.158), which takes the same form as (7.24) derived in section 

7.1. Since the mass continuity equation is unaltered, the potential vorticity is followed by 

combining the vorticity equation and the mass continuity equation. With the definition 

(7.26), one can rewrite the potential vorticity equation as the potential height equation. 

These equations all take the same form as discussed in section 7.1. The difference here 

is that now (7.26) is invertable since the velocity field and mass field are interrelated by 

the geostrophic assumption, and they can all be expressed in terms of a single variable H. 

Substitution of H into (7.23) and then (7.27) gives a complete prediction cycle. 
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7.3.2 The Hamilton principle and Clebsch transformation associated with the 
mixed-balance equations on an ƒ-plane 

Let us now consider a more complicated physical situation. The flow now is three 

dimensional and possesses strong curvature. Assuming the curvature of this flow can be 

depicted by its tangential component of velocity, we shall then partition this tangential 

velocity into gradient balanced flow and the deviation from this balance. At the same time 

we maintain the partition of the radial wind into geostrophic and ageostrophic components, 

but the geostrophic part is modified by a curvature factor. In this case, (7.149) becomes 

(7.158) 

where ug is the geostrophic momentum defined in (2.42), vg is the gradient wind defined 

in (2.43), and ϒ is a curvature parameter given in (2.44). Again we assume that the 

momentum components that deviate from the geostrophic and gradient values are small. 

Under this approximation and using the s-coordinate in the vertical, the Lagrangian 

(7.103) is modified to 

where 

(7.159) 

(7.160) 

which represents the total energy in the s-coordinate. M is the Montgomery potential 

M = cpT + gz, a quantity that combines the internal and potential energy. 

We next take variations of (7.159) in physical coordinates (r,φ,z). 
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respectively. Collecting (7.161)-(7.164), one can see that this set of equations is exactly 

the set we derived in Chapter 2 with the combined geostrophic and gradient momentum 

approximation. The fact that this approximated system retains the particle labeling sym-

metry, the cyclic and time translation conditions in the Hamiltonian explains why we 

could derive all the corresponding conservation laws in Chapter 2. 

(7.163) 

(7.164) 

and the mass continuity equation 

Since the approximation made in the Lagrangian does not change the mass continuity 

equation (7.100), and the internal and potential energy are left unaltered, one can easily 

show that the variation of (7.159) in z and the time derivative with repect to (7.100) result 

in the hydrostatic equation 

(7.162) 

which gives 

Similarly, for the variation δφ of (7.159) 

(7.161) 

where it should be noted that the difference between the second and sixth terms, the 

fourth and seventh terms result in O(e) terms, which can all be put in the small residual. 

The notation dΩ0 = r0drQdφ0ds0 stands for the volume-integral element. 

Assuming that the change of the curvature distortion factor following a particle mo-

tion can be neglected, we then obtain from the arbitrariness of Sr in this variation 
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Craig (1991) claimed to have developed a three dimensional theory for a balanced 

vortex from Hamilton's principle. Using the scale analysis with the assumption that the 

radial wind is much smaller than the tangential wind, he was able to formulate an ap-

proximate Lagrangian in which the radial wind is completely absent. Variations of his 

modified Lagrangian in physical space result in a set of dynamical equations which are 

nearly the same as Eliassen's axisymmetric balanced vortex equations. However, in trans-

formed space he was surprisingly able to get the canonical momentum equations in three 

dimensions. The L1 dynamics that we obtained, i.e., (7.159), is quite different from Craig's 

in that the radial wind, though small, is still retraceable in the approximate Lagrangian so 

that variations of such a Lagrangian in physical space produce the particle accelerations 

in the radial direction [ref. (7.161)]. It is this term that captures the physics needed to 

alter the axisymmetric balanced flow. In Craig's theory, however, such asymmetric mech-

anisms are not included. We next prove that our approximate system, when transformed 

to potential radius and geostrophic azimuth space, will yield three dimensional canonical 

momentum equations identical to those of Craig (1991). 

To transform this dynamical system, let us denote the set of reduced Clebsch velocity 

potentials associated with the vorticity coordinates as 

(7.165) 

When F = rvg/f and G = —ug/fR, (7.165) expresses the set of combined potential 

radius and geostrophic azimuth coordinates. The way in which the generalized Clebsch 

representations (7.36) and (7.37) reduce to (7.165) has been pointed out in section 7.1, 

although the physics behind such a reduction is still a mystery. 
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Since we know what forms of the canonical equations we would like to transform to, 

the easiest way to transform the variational principle is to proceed inversely, i.e., 

where O(R 2
0 fL 2 ) stands for the quadratic term in F and G, the remaining terms form the 

L1 dynamics in cylindrical coordinates after comparing with (7.159). We can therefore 

write our truncated dynamical system in transformed space as 

(7.166) 

where M* is defined in (7.160). 

We now take variations of (7.156) in transformed space, which yields 

(7.167) 

(7.168) 

Equations (7.167) and (7.168) are the canonically transformed versions of (7.161) and 

(7.162). They are formally in geostrophic balance when the transformed velocity field is 

defined as (U,V ) = (DRJDt, RDΦ/Dt). In comparison with the primitive equation case 

in the previous section, the essential difference between these canonical equations and 

(7.120) and (7.123) is that (7.167) and (7.168) form the diagnostic relations between the 

pressure field and the transformed wind field, while these diagnostic relations can not be 

attained in (7.120) and (7.123) unless the transient information of Clebsch potentials are 

supplied. 
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The balanced model can be constructed in exactly the same way as in Chapter 2. 

Here we summarize it briefly as follows. From (7.167) and (7.168), we can derive a vortic-

ity equation [refer to (2.66)]. By combining the vorticity equation and the mass continuity 

equation (7.164), we obtain the potential vorticity equation (2.73) or the potential pseu-

dodensity equation (2.76) which is used as the fundamental predictive equation to get the 

potential pseudodensity at the next time level. The invertibility principle can be formed 

through (2.74), from which the predicted potential vorticity or potential pseudodensity is 

inverted to obtain the balanced wind and mass fields, which then make further prediction 

possible. 

7.3.3 The Hamilton principle and Clebsch transformation associated with the 
mixed-balance equations on a sphere 

In the final effort here, we consider highly curved flow on the sphere. This curvature 

of the flow is due to the spherical geometry of the Earth. Thus, we shall partition the 

zonal flow into a gradient balanced flow and the deviation from this balance, and the 

meridional flow into geostrophic and ageostrophic ones, i.e., 

(7.169) 

where the zonal gradient momentum ug, the meridional geostrophic momentum vg and 

the curvature parameter 7 are all given in (3.36)-(3.38) of Chapter 3. 

The Lagrangian for this flow can be written as 

(7.170) 

(7.171) 

where 

which represents the total energy in the s-coordinate. 

One should compare the approximated Lagrangian (7.170) with the full Lagrangian 

(7.128) which has been used to derive the set of primitive equations. We now prove that 

this approximated Lagrangian forms a correct variational principle for the mixed balance 
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equations on the sphere that we developed in Chapter 3. By taking variations of (7.170), 

we have 

(7.172) 

Similarly, for the variation δφ of (7.170) 

where we have assumed that the change of the curvature distortion factor following particle 

motion is negligible. By considering the arbitrariness of δφ, we have 

(7.173) 

(7.174) 

where it should be noted that the difference between the second and fifth terms, the third 

and sixth terms result in O(e) terms, and they can all be put in the small residual. 

Because of the arbitrariness of δλ in this variation, we obtain 

Since the approximation made in the Lagrangian does not change the mass continuity 

equation (7.125), and the internal and potential energy are left unaltered, one can easily 

show that the variation of (7.170) in z and the time derivative of (7.125) result in the 

hydrostatic equation 
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and the mass continuity equation 

(7.175) 

respectively. Collecting (7.172)-(7.175),one can see that this set of equations is exactly the 

set we have derived in Chapter 3 with the combined geostrophic and gradient momentum 

approximation. 

To transform this dynamical system, let us denote the set of reduced Clebsch velocity 

potentials associated with the vorticity coordinates as 

(7.176) 

When F = ug cos φ/Ωa and G = v3/2Ωa sin Φ cos Φ, (7.176) expresses the set of combined 

potential latitude and geostrophic longitude coordinates. The way in which the generalized 

Clebsch representations (7.61) and (7.62) reduce to (7.176) has been pointed out in section 

7.1, although again the physics behind such a reduction is still a mystery. 

Since we know what forms of the canonical equations we would like to transform to, 

the easiest way to transform the variational principle is to proceed inversely, i.e., 

where O(R 2
0 fL 2 ) stands for quadratic term in F and G. The remaining terms exactly 

match the L1 dynamics presented in (7.170). Therefore, the truncated dynamical system 

in transformed space can be expressed as 

(7.177) 
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where M* is defined in (7.171). 

It is straightforward to obtain, after taking the variations of (7.177), 

(7.178) 

(7.179) 

Equations (7.178) and (7.179) are the canonical forms of momentum equations (7.172) 

and (7.173). They form the important diagnostic relations for balanced dynamics. The 

general structure of such a balanced dynamical model is discussed in detail in Chapter 3 

and outlined in section 7.1 of this chapter. 



Chapter 8 

CONCLUDING REMARKS 

The applicability of balanced dynamics, conceptually, should not be limited to the 

quasi-straight line type of flows where the two-force balanced system is adequate to capture 

the essence of these fluid motions, and technically there should be no substantive obstacle 

to generalizing the quasi-geostrophic and semigeostrophic theories with gradient wind 

balance while preserving the simple mathematical formulation. Such a balanced theory, 

however, does not exist to our knowledge. The present study is an attempt to develop a 

balanced theory that can deal with flows with large curvature. Several aspects centered 

on this topic have been discussed in this study. In the final chapter here, we will first 

give a general summary of the current study, then offer our view of future research on this 

subject. 

8.1 Summary of the present study 

In Chapters 2 and 3, we have derived a set of filtered equations on the ƒ-plane and 

on the sphere. The formalism to obtain such balanced systems is very similar to that 

of semigeostrophic theory. Through a Rossby number analysis, we impose a combined 

geostrophic-gradient momentum approximation in the primitive equations. The canonical 

transformation of this set of approximate equations leads to the universal formulation 

of balanced dynamics, i.e., one predictive equation for the potential pseudodensity (the 

reciprocal of potential vorticity) and one invertibility principle to diagnose the balanced 

wind and mass fields. These equations (either in physical space or in transformed space) 

may be referred to as the mixed-balance equations, and the theoretical framework may 

correspondingly be referred to as the mixed-balance theory. 
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The terminology "universal formulation" implies that all balanced dynamic models, 

no matter how complicated, should eventually take a similar formulation. This is under-

standable because the implementation of the balance assumption in the dynamic system 

effectively reduces the number of prognostic equations to one (so that there is only one 

class of wave motions), and the remaining diagnostic equations can be reformulated and 

combined to yield one inversion operator. The choice of the advected substance (the 

predictive quantity) can, technically speaking, be arbitrary. However, if we choose this 

quantity in such a way that it carries both dynamic and thermodynamic information, and 

is conservative, it will give the simplest closed form of the dynamics. This quantity is 

virtually embedded in the principle derived by Rossby (1940) and Ertel (1941), i.e., the 

potential vorticity. Thus, PV becomes the substance to be advected and carried around 

by the fluid motion. Under certain balanced assumptions, a snapshot of the distribution of 

this substance provides all the essential meteorological information. For balanced models 

whose universal formulation is achieved by coordinate transformation, it turns out that 

a more amenable quantity to be advected is the potential pseudodensity (Schubert et al. 

1989). 

Table 8.1 summarizes the different balanced models in terms of their formulations: the 

fundamental predictive equation and the invertibility principle; their predictive quantity 

and their balance type. Needless to say, all these models have the same formulation 

(the universal formulation we discussed previously). Thus, the solution procedures for 

these models are all the same, i.e., the solution of one time evolution equation (mixed 

initial-boundary value problem) and one elliptic equation (pure boundary value problem). 

However, as the balanced models become more general, the degree of nonlinearity of 

the elliptic equation (invertibility principle) becomes higher. In comparison, the mixed-

balance model has a nearly identical structure to that of the semigeostrophic model. Their 

invertibility principles have cubic nonlinearity. 

The mixed-balance theory explored in this study has nice physical properties in the 

sense that it has conservation principles for total energy, angular momentum and potential 

vorticity. In addition, it preserves the fully three-dimensional vorticity equation. Table 
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1. Nondivergent barotropic model 

Table 8.1: Formulation, predictive quantity and balance type for balanced models. 

Predictive quantity: vorticity. Balance type: two-dimensional incompressible. 

2. Quasi-geostropic model 

Predictive quantity: quasi-geostrophic potential vorticity. Balance type: geostrophic. 

3. Balanced equation model 

Predictive quantity: vorticity. Balance type: nonlinear. 

4. Semigeostrophic model 

Predictive quantity: potential pseudodensity. Balance type: geostrophic. 

5. Mixed-balanced model 

Predictive quantity: potential pseudodensity. Balance type: combined geostrophic-gradient. 
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Model Energy PV Vorticity Momentum 
Nondivergent barotropic yes yes1 3rd component yes 

Quasi-geostrophic yes yes 3rd component2 yes 

SW balance equation no yes 3rd component no 

Isob. balance equation yes no 3rd component no 

Isen. balance equation no yes full no 

Semigeostrophic yes yes full yes 

Mixed-balance yes yes full yes 

Table 8.2: Physical properties associated with different balanced models. 

8.2 compares these physical properties for each balanced model. In this table, the "SW 

balance equation" denotes the balance equation derived from the approximation of the 

shallow water primitive equations; the " Isob. balance equation" denotes the balance 

equation derived from the approximation of the fully stratified primitive equations in 

pressure coordinate (the Charney-Bolin type of balance equation); the " Isen. balance 

equation" denotes the balance equation derived from the fully stratified primitive equations 

in isentropic coordinate. Footnote 1 in the first line of this table indicates that there is no 

distinction between vorticity and potential vorticity in a nondivergent barotropic model. 

Footnote 2 in the second line indicates that although one may derive a three-dimensional 

vorticity equation for QG system, only the third component of the vorticity equation is 

used to close the dynamic system. 

The mixed-balance theory also possesses consistent asymptotic properties. First, 

as the local radius of curvature becomes infinitely large, the mixed-balance equations 

reduce to the semigeostrophic equations. Secondly, in the axisymmetric limit (or zonally 

symmetric limit), the mixed-balance model becomes the Eliassen balanced vortex model 

(or zonally symmetric model). In Chapter 7, we also demonstrated that the Hamiltonian 

structure associated with the mixed-balance equations is also constructable. Its canonical 

transformation is closely related to the reduced form of Clebsch velocity representation. 
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Although the full application of the mixed-balance theory to a particular atmospheric 

phenomenon has not yet been attempted here, we do compute the eigensolutions of the 

mixed-balance equations both on the ƒ-plane and on the sphere (Chapter 5). For ƒ-plane 

theory, we idealize a tropical cyclone by a Rankine vortex, and use this vortex as the basic 

state. The computed eigenfrequencies and eigenfunctions are compared with those from 

the primitive equation model and from the nondivergent barotropic model. The results 

suggest that the eigenmodes depicted in the mixed-balance equations resemble the Rossby 

modes in the linear manifold of the primitive equation model, and that the linear solutions 

from the mixed-balance model retain reasonable accuracy in comparison with those from 

the PE model. The analytical solution obtained from the nondivergent barotropic model 

differs sharply from those obtained from the mixed-balance model and therefore from 

the PE model. We conjectured that this difference may be largely due to the difference 

between the divergent model and the nondivergent model. Different vortex intensities 

are adopted in the calculations with the observational values for the tangential wind and 

the horizontal scale of the vortex. Three vortices with different intensity are used to 

represent three development stages of a tropical cyclone, i.e., tropical depression, tropical 

storm and hurricane. We find that the Rossby wave frequency is strongly dependent 

upon the vortex rotational rate. As the vortex spins up, the Rossby wave frequencies 

are substantially enhanced. By examining the full spectrum of eigenfrequencies from the 

primitive equation calculation, we find a class of Rossby waves with such high frequencies 

that their dispersion curves overlap those of inertia-gravity waves. The eigensolutions of 

the spherical version of the mixed-balance equations are also computed, and they compare 

quite well with the primitive equation results of Longuet-Higgins (1968). 

A converging view of shear instability from the mixed-balance theory and from the 

previous balanced theories is discussed in Chapter 6. The linearized mixed-balance equa-

tions naturally lead to a stability theorem of the Charney-Stern type. For a circular flow 

on an ƒ-plane, the necessary condition for combined barotropic and baroclinic instability 

is that the radial gradient of potential pseudodensity changes sign somewhere in the do-

main. For a circular flow on the spherical earth, the necessary condition for instability to 
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occur is that the meridional gradient of potential pseudodensity changes sign somewhere in 

the domain. The difference between these newly derived stability theorems and previous 

ones is that the curvature of the basic flow has been taken into account. This curvature 

effect, apparently, does not alter the general stability statement. As a byproduct of the 

above analysis, we also derived the generalized Eliassen-Palm theorems associated with 

the mixed-balance equations on the ƒ-plane and on the sphere. 

Since the Kelvin wave is invisible on a potential vorticity map, the new balanced 

model developed here may not be suitable for study of some tropical weather phenomena 

such as the Madden-Julian oscillation or the quasi-biennial oscillation. On the other hand, 

if we consider a flow with a predominent zonal component, the mixed-balance equations 

on a sphere (see Chapter 3) reduce to Gill's long-wave approximate system (Gill, 1980; 

Stevens et a l . , 1990) by a scaling argument. Under this approximation, Kelvin waves are 

included. This issue is worthy of further investigation. 

8.2 Directions for future research 

Since circular flows and other highly curved flows are common patterns of fluid motion 

on the rotating spherical planet (see Figure 1.1 of Chpter 1), the theory developed in this 

study can find many potential applications. For example, we may use the mixed-balance 

theory to study tropical cyclones, midlatitude synoptic disturbances, polar lows and even 

some mesoscale convective systems. For these weather systems, traditional balanced mod-

els such as the quasi-geostrophic or semigeostrophic equations may not describe the fluid 

motions correctly, or at least accurately (Snyder et al. 1991). The primitive equation 

model, on the other hand, may not give clear physical insights due to its generality. From 

Table 8.1 we can see that the mixed-balance model has an almost identical formulation 

to that of the semigeostrophic model. Therefore, the solution technique for the semi-

geostrophic model can be utilized to solve the mixed-balance equations with only minor 

modification. 

Another class of problems for application of mixed-balance theory is that solved by the 

symmetric models. These problems include the Hadley circulation [which has been solved 
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by using a zonally symmetric model, e.g., Hack et al. (1989), Schubert et al. (1991)] 

and hurricane circulation [which has been solved by using the axisymmetric balanced 

model, e.g, Ooyama (1969), Schubert and Alworth (1987)]. Although these atmospheric 

phenomena are dominated by low-wavenumber motions, the eddy motions still contribute 

importantly to the total dynamical picture, [e.g., the eddy transports of momentum 

and energy in the Hadley circulation (Lorenz, 1967) and the spiral bands in a hurricane 

(Guinn and Schubert, 1993)]. A reformulation of the mixed-balance model other than the 

potential vorticity (potential pseudodensity) formulation is possible. The new formulation 

most likely involves a pair of transversal circulation equations with a predictive equation 

either for one of the horizontal momentums or for entropy. This methodology has been 

discussed in Hoskins and Draghici (1977) in the context of semigeostrophic equations. 

Such a formulation for the balanced equations presented in Chapter 3 [(3.31)—(3.34)] may 

have a potential application to the physical problem of the coupled Hadley and Walker 

circulations. 

The class of high frequency Rossby waves identified in Chapters 4 and 5 may be of 

importance both theoretically and practically. First, the existence of these high frequency 

Rossby waves may alter the concept that Rossby waves are always low-frequency motions. 

Secondly, these high frequency Rossby waves revealed in our mixed-balance model raise 

the question of what the balanced (or filtered) models mean. Do the balanced models 

filter all the fast modes and retain the slow ones? When some of the Rossby frequencies 

are as high as those of inertia-gravity waves, what do the balanced models filter? Is 

there such a thing as selective filtering (filtering the wave types rather than frequency 

ranges)? We speculate that the occurrence of these high frequency oscillations in the 

balanced model may be closely related to the fuzziness of the slow manifold discussed by 

Warn and Menard (1986), Lorenz and Krishnamurthy (1987) and McIntyre and Norton 

(1992). In these studies, they argue that a true slow manifold that is completely devoid 

of high frequency oscillations may not exist. However, since the fast waves presented 

in our balanced model are strongly dependent upon the rotational rate of a spinning 

vortex, they possess Rossby-like features. In this sense, they may be different from the 
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slaved gravity-like modes associated with nonlinear normal mode initialization, and from 

the spontaneously emitted gravity waves at nonzero Froude number and Rossby number. 

Furthermore, as the dispersion curves of the high frequency Rossby waves intersect those 

of inertia-gravity waves, there is no longer a clear separation of fast manifold and slow 

manifold [like those presented in Matsuno (1966) and in Longuet-Higgins (1968)]. This 

situation may have profound implications on the stability analysis. For example, in Ripa's 

theorem, if we interpret one of his stability conditions as limiting the phase lock between 

the Rossby waves, and the other one as limiting the phase lock between the inertia-gravity 

waves, we then need a more general condition to limit the phase lock between the Rossby 

waves and the inertia-gravity waves in the situations considered above. This mechanism 

has been conjectured by Sakai (1989) as a new type of ageostrophic instability caused 

by a resonance between Rossby waves and gravity waves. In order to understand these 

questions, we need to extend the current study by conducting more normal mode analyses 

with different basic wind profiles. 

In association with the theoretical results obtained in Chapter 6, we expect that some 

more applied normal mode instability problems can be investigated in the future. We 

have developed the barotropic versions of the eigensolvers for the mixed-balance model 

both on the ƒ-plane and on the sphere. With these solvers we can study instability 

problems involving curved flows such as hurricanes, extratropical cyclones and polar lows, 

by employing observed basic wind profiles. The results from these studies can be compared 

with similar studies using the nondivergent barotropic model, the quasi-geostrophic model 

and the primitive equation model (Staley and Gall, 1979; Gent and McWilliams, 1986; 

Flatau and Stevens, 1989). We can further extend these eigensolvers to include vertical 

discretization so that we can study the nonseparable baroclinic instability, or the combined 

barotropic and baroclinic instability problems (McIntyre, 1970; Kuo, 1978; Moore and 

Peltier, 1989, 1990). The theorems derived in Chapter 6 can be used as guides to aid 

understanding of this class of instability problems. 

There are still possibilities to further generalize the mixed-balance theory with even 

higher order balanced approximations. For example, in parallel with the formulations of 
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QG, SG and the mixed-balance models, can we use the nonlinear balanced wind to replace 

the advected total wind to obtain a more general balanced dynamic system? This general 

balanced model could possibly treat any kind of balanced flow on the spherical earth. It 

preserves the simple formulation of all balanced models (see discussion in the previous 

section), with a more accurate but more complicated PV inversion operator. The current 

mixed-balance model may be a special case of this general balance theory. In Chapter 7, 

we have shed some light on such a possible generalization. It seems that the discovery of 

this theory may crucially depend on the full understanding of Clebsch transformations. A 

probable way to proceed may be to find a properly approximated Hamilton's principle, and 

to combine this principle with the properly simplified Clebsch representation of velocity. 

We may also consider theoretical extensions to the stability theories derived in Chap-

ter 6. Future generalizations may lie in two aspects. First, the linear stability theorems 

can be generalized to the finite-amplitude results (see Table 6.1 of Chapter 6). This gen-

eralization may have some theoretical significance, as shown by McIntyre and Shepherd 

(1987) and Shepherd (1988, 1989) for the two-dimensional incompressible flow and quasi-

geostrophic flow. Secondly, by using the Casimir approach, it may be possible to rederive 

a generalized wave-activity relation for the mixed-balance system so that the wave-activity 

density can be expressed in terms of Eulerian quantities. A similar generalization for the 

primitive equation system has been found by Haynes (1988). This generalization may 

have some practical significance. Combining this generalized wave-activity relation and 

the mean state momentum equations, one can quantitatively study wave-mean interaction 

problems. 
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Appendix A 

TRANSFORMATION OF THE MOMENTUM EQUATIONS 

In this appendix, we will prove that the horizontal momentum equations with the 

combined geostrophic-gradient momentum approximation can be transformed to their 

canonical forms. In the first section, we will use a set of combined potential radius and 

geostrophic azimuth coordinates to transform the mixed-balance equations on an ƒ-plane. 

The transformation of mixed-balance equations on the sphere by a set of combined poten-

tial latitude and geostrophic longitude coordinates is discussed in the second section. 

A. l The mixed-balance momentum equations on an ƒ-plane 

The easist way to transform (2.37) and (2.38) is to work backward from (2.64) and 

(2.65): 

(A.l) 

(A.2) 

By using the first entry of (2.61) and substituting the geostrophic azimuth coordinate 

(2.56), we can rewrite (A.l) as 

or, 

The second line is obtained by directly calculating the derivative. Substituting (A.2) for 

DR/Dt, we have 
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so that 

or 

With the definition of 7, the above expression can be written 

(A.3) 

which is exactly the momentum equation (2.37) in physical space. 

Similarly, from (A.2) we have 

or, 

by using the potential radius formula (2.55) and the second entry of (2.61). Calculating 

the derivative in the last expression, we obtain 

(A.4) 

Collecting (A.3) and (A.4), one should be convinced that their transformed counterparts 

are (2.64) and (2.65) in (R,Φ,S,T) space. 

A.2 The mixed-balance momentum equations on a sphere 

Following the same procedure as in the ƒ-plane case, we start with the transformed 

canonical equations [Eqs. (3.59) and (3.60) of Chapter 3]: 

(A.5) 

(A.6) 

On substituting the potential latitude formula (3.49) and the first entry of (3.56) into 

(A.5), we obtain 
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Calculating the derivatives and rearranging terms, we can write the last expression as 

(A.7) 

which is exactly the momentum equation (3.31) in physical space. 

Similarly, from (A.6) we have 

by substitutions of the second entry of (3.56) and the geostrophic longitude coordinate 

(3.51). Calculating the derivatives in this expression gives 

in which the third and the fifth terms cancel when (A.5) and (3.56) are used. After the 

cancellation of these terms, this equation becomes 

Finally, with the definition of the factor 7 in (3.39), we obtain 

(A.8) 

Thus, we have proved that the momentum equations (3.31) and (3.32) can be transformed 

to their canonical forms, which are expressed in (3.59) and (3.60). 



Appendix B 

DERIVATION OF THE VORTICITY EQUATION FOR THE 

MIXED-BALANCE THEORY 

The mixed-balance theories developed in Chapters 2 and 3 possess the three dimen-

sional vorticity equations, (2.66) and (3.61), which have been expressed as isentropic forms 

in accordance with the coordinate system we adopted. The detailed derivations of these 

vorticity equations are given in this appendix. In the first section, we derive the vorticity 

equation for the ƒ-plane theory, and the result is generalized to the spherical case in the 

second section. 

B . l The vorticity equation associated with the mixed-balance theory on an 
ƒ-plane 

Although the vorticity equation can be derived from the horizontal momentum equa-

tions (2.37) and (2.38), the easist way is to work with the canonical equations. We begin 

with the transformed momentum equations (2.64) and (2.65): 

(B.l) 

(B.2) 

To derive the vorticity equation, we take the cross derivatives of (B.l) and (B.2) in the 

form: 

(B.12) 

Let us denote the four terms in this expression as (1), (2), (3) and (4) respectively, and 

calculate each of these terms separately as follows. 
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On the right hand side of (B.l) and (B.2): 

Noting the cancellations among several terms, we now add the four terms together and 

group them in such a form: 

(B.4) 

If we define the vorticity vector as: 

(B.5) 
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The addition of these four terms results in the cancellations among several terms, and the 

remaining terms can be written 

(B.7) 

The last line is obtained by using the rules of differentiation or the derivative relations for 

the coordinate transformation given in (2.58) and (2.59) of Chapter 2. 

Now collecting results (B.5), (B.6) and (B.7), we have derived the vorticity equation 

for the mixed balanced theory on an ƒ-plane: 

(B.8) 

where (£,??, Ϛ) is the three dimensional vorticity defined in (B.5). 

We now calculate (B.3) for the right hand side of (B.l) and (B.2) as follows: 

(B.6) 

then (B.4) simply becomes 
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B.2 The vorticity equation associated with the mixed-balance theory on a 
sphere 

We begin with the transformed momentum equations (3.59) and (3.60): 

(B.9) 

(B.10) 

Let us denote the four terms in this expression as (1), (2), (3) and (4) respectively, and 

calculate each of these terms separately as follows. 

On the right hand side of (B.9) and (B.10): 

To derive the vorticity equation, we take the cross derivatives of (B.9) and (B.10) in the 

form: 
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(B.12) 

(B.13) 

(B.14) 

then (B.12) simply becomes 

If we define the vorticity vector as: 

Noting the cancellations among several terms, we now add the four terms together and 

group them in such a form: 



221 

We now calculate (B.ll) for the right hand side of (B.9) and (B.10) as follows: 

The addition of these four terms results in cancellation among several terms, and the 

remaining terms can be written 

Now collecting results (B.13), (B.14) and (B.15), we have derived the vorticity equation 

for the mixed-balance theory on the sphere: 

(B.16) 

where (f, 77, () is the vector vorticity defined in (B.13). 
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