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ABSTRACT
CASE STUDY OF CONVECTION LINES DURING GATE

A semi-quantitative case-study of 2 September 1974 (Julian Day 245)
is presented. As many data sources as possible were used to describe
the dynamics and thermodynamics of two lines of active convection lo-
cated within the GATE B-scale ship array. The northern 1ine and south-
ern 1ine were located to the north and south of the C-scale array
respectively. Data relative to the lines from a total of five aircraft
flying on north-south legs haye been composited and indicate a region of
strong convergence near the surface ahead of the line (n 1073 s']) with
a somewhat weaker divergence to the rear associated with a region of
downdraft air. Both lines seem to indicate that 3-dimensional motions
may be important in their development and an analysis of the composited
data show the lines to be similar in one respect to tropical squall-Tines
with block inflow to the south and block outflow to the north. The lines

1 southwards with no conclusive evidence of

have a travel speed of ~ 6 ms~
the steering level suggested by Pestaina-Haynes and Austin (1976). At
present, no attempt has been made to explain their origin and forma-
tion except to suggest that an adequate supply of high O air extending
from the surface to at least cloud base is required for their mainten-
ance. The Tow-level divergence and vorticity also seem to be impor-
tant. No observable temperature change can be found across the Tines
except near the surface indicating the presence of a shallow density
current with an origin between 900 mb and 800 mb which spreads out when

it reaches the surface. A density current model is solved for the

travel speed using the 6bserved temperature change (Miller and Betts,

ii
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1976). This gives a value of ~ 3.5 ms™!

showing that this model proba-
bly does not apply to this type of convection.

The fact that the 1ines travel southwards at 6 ms'] is not clearly
understood except to comment that they appear to be embedded in feeder
bands to a well defined vortex to the NE of the A/B-scale array and it
is possible that their movement is closely related to the large-scale

dynamics of the vortex although no conclusive evidence is presented in

this paper.
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I. INTRODUCTION

1.1 The GATE experiment

Prior to the GATE experiment, which was conducted in the summer of
1974, there was a serious deficiency both in the quality and quantity of
meteorological data in the tropics. Consequently, much of the research
in the tropics to date has had to employ a compositing technique where
data relative to a number of similar atmospheric phenomena are averaged
together. (Although this is a useful numerical tool to study large-
scale atmospheric systems, sub-synoptic and mesoscale systems should be
studied case-by-case because any form of averaging may disguise impor-
tant features.) This meant that we were unable to understand one of the
unresolved problems in tropical meteorology -- namely scale-interaction.
In an attempt to fill in this gap in our knowledge, a massive data net-
work was set up between East Africa and Brazil with sufficient density
to monitor weather systems ranging from the cumulus scale to the wave,
(or planetary) scale.

The experiment was focused in the eastern Atlantic where a network
of 3 nested ship arrays were set up. These are indicated in Figure 1.

In decreasing order of size we have:

a) A/B-scale array N synoptic scale

b) B-scale array 3 sub-synoptic scale

c) C-scale array 4 mesoscale or cumulus
scale

The experiment consisted of three separate phases when the ships re-
leased rawinsondes at regular intervals -- every six hours and every
three hours during intensive periods. These data were supplemented with

the use of thirteen highly instrumented aircraft which flew coordinated
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missions through regions of active convection located within the ship
arrays. Other instrumentation systems include tethered balloons, struc-
ture sondes and meteorological buoys, which are useful in studies which
require a high degree of resolution in the sub-cloud layer. The devel-
opment of weather systems was also monitored by ship radar and the SMS-1
satellite which provided twenty-four hour coverage. Thus, we now have a
valuable data set from which we should be able to answer questions re-
garding scale-interaction and to improve our present numerical models of

the global circulation.

1.2 Objectives of this report

The goal of this research is two-fold. First, an attempt has been
made to describe the thermodynamic and dynamic features of lines of
convection which appeared with surprising regularity within the GATE
ship arrays. Secondly, as many independent data sets as possible were
used so that an intercomparison of the data sets will serve to validate
the data. In an experiment of this nature, several different data sys-
tems were used to measure the same parameters thereby introducing prob-
lems of instrument calibration and intercomparison. Since the experi-

ment, our main concerns have been data intercomparison and validation.

1.3 Previous studies

Recent research efforts in tropical meteorology have been directed
towards the study of tropical cloud clusters and their relationship to
easterly waves. Cloud clusters have been studied extensively by Riehl
(1947, 1954) and Williams and Gray (1973). Reed and Recker (1971) and
Burpee (1972, 1974), described the structure and properties of wave

disturbances using a compositing technique and found the convection to



be closely correlated with the location of the wave-axis. More recent
studies by Reed et al. (1977) showed similar results using GATE data
composited relative to eight wave disturbances during phase III. How-
ever, the GATE has provided large quantities of data on all space-scales
ranging from cumulus-scale to planetary (or wave) scale. It is now
possible to conduct more detailed studies of the small scale weather
systems which are individual components of a cloud cluster. The convec-
tion line is one such component.

It is the small, organized weather systems which account for a high
percentage of the rainfall in the tropics (Krishnamurti, 1968) even
though their area coverage may be only a few percent. Studies using
high altitude observations, conducted by Kuettner (1959, 1971), showed
mesoscale organization of small tropical cumulus into cloud bands which
had a definite spacing. One such band is a squall-line. The air flow
becomes highly organized in these systems thus enabling them to propa-
gate for hours. Studies, to date, notably Zipser (1969) and Betts in a
series of papers on Venezuelan squalls, have been primarily concerned
with air flow through these systems and its consequent modification.

In a case study using data from the Line Islands Experiment, Zipser
(1969) showed that the development of tropical disturbances requires a
high degree of organization. The convergence/divergence patterns were
most intense in the lowest 500 m consistent with the idea of Gray (1968)
that large sub-cloud layer convergence is fundamental to producing in-
tense convection.

Moncrieff and Green (1972), Browning (1962) have already stressed
the importance of the slope of the main updri%t (in the upshear sense)

in the maintenance of line-type convection.



Zipser (1977), and Miller and Betts (1977) stressed the importance
of the downdraft in the energetics of the system. Air enters the squall
from the front, most of which rises into the active towers. The conse-
quent precipitation induces downdraft activity on two different scales.
The cloud-scale downdraft has its origins beneath the main updraft and
is near saturated as it reaches the surface. The mesoscale downdraft
has its origins beneath the anvil to the rear of the main updraft. This
downdraft is unsaturated and eventually attains positive buoyancy with
the result that it only occasionally is able to reach the surface. The
unsaturated air (formed by a mixing process) to the rear of the squall-
Tine increases the fluxes of sensible heat and moisture from the ocean
to the atmosphere and is, therefore, very important to the energetics of
the tropics.

Papers by Betts (1976) (observational) and Moncrieff and Miller
(1976) (theoretical) describe the transformation of the atmosphere after
the passage of a squall-line. The transformations are closely related
to the level of origin of the downdraft air. This air has its origin
in low levels atop the updraft air in the subcloud layer. As the down-
draft is accelerated towards the surface, two opposing processes come
into operation, i.e. descent produces a warming and drying and evapora-
tion produces a cooling and moistening. Thus, it is possible to observe
four different transformations:

a) warming and drying

b) warming and moistening

c) cooling and drying

d) cooling and moistening.

a) and ¢) are the most commonly observed.



With a few exceptions, e.g. 12th September 1974, most of the lines
of convection observed during the GATE were of a 'mild' nature having
low-level winds of order 6 ms'1 and so they can hardly be called squall-
lines. Cloud tops frequently reached the upper troposphere as a result
of large humidities in the mid-troposphere.

Since the GATE there have been several case studies using high re-
solution aircraft data. Using uncorrected data obtained during the
field phase of the experiment, Reed et a].,(]975) made a brief analysis
of a flight into the ITCZ on August 4, 1974 and found large 2-dimensional
convergence where the convective activity was maximum. The convergence
attained a value of 3X10™% s™1. Most of the changes associated with the
ITCZ took place in a small distance (v 3 km). In another paper, Reed
(1975) in a case study of a squall on June 28, 1974 found a maximum con-
vergence at the leading edge of the 1line and a maximum divergence to the
rear of the rain band. Pennell (1975) studied an isolated line of cumu-
Tus and also observed strong low-level wind shifts. Downdraft activity
was also fougg to be present even though the Tine was relatively weak.

An intensive study of a mesoscale disturbance during BOMEX (Smith
et al., 1975) suggests that these systems are embedded in larger wave
troughs. However, two case-studies by Seguin and Garstang (1976) in-
dicated strong cloud layer-subcloud Tayer coupling on the convective
scale. They commented that in the absence of low-level convergence,
mesoscale systems will be short-lived. The author feels that this is
the case in this study. However, the problem of scale-interaction is
still unresolved and the case-study approach could shed some more light

[ ]

on the subject. éﬁ



1.4 Contents of this report

The 2nd September 1974 (Day 245) was chosen for study because two
well developed lines of convection were observed to the west of 'Quadra’
in the C-scale array. A stack of six aircraft flew on north-south
tracks through both lines in the latter stages of their development,
thus enabling aircraft data to be composited relative to the 1ines. The
data for one aircraft (I1-18M) were not available. These data combined
with rawinsonde, tethered balloon and structure sonde data have been
used to qualitatively describe the 2-dimensional flow through the
lines and to determine the consequent dynamic and thermodynamic changes
produced upon the environment.

A brief ove;view of the data used and data reduction techniques is
given in Chapter 1. Chapter 2 shows the synoptic-scale picture using
several observational systems.

The results are presented in Chapter 3. The meso-synoptic flow in
the vicinity of the lines is described from aircraft cross-sections and
high resolution tethered balloon data. Some vertical profiles relative
to the Tines are also presented.

Chapter 4 is devoted entirely to data intercomparison between
several platforms. In the first section the aircraft cross-sections are
compared to the precipitation intensity cross-sections from the Quadra
radar and in the last section an evaluation of the BLIS, rawinsonde,
aircraft and boom data has been made.

Finally, some comments about the relationship of the lines to their
large-scale environment are given together with some suggestions for

future research.



1.5 Data
The core of the study consists of

(a) Aircraft data:

Iab]e 1. Altitudes flown by the GATE aircraft.

Aircraft Altitudes Pressures
(Kft) (mb)

DC-6 0.88, 1.3,"2 985, 970, 945

L-188 3.2/ 8 900, 810

usC-130 9, 12 720, 640

I1-18C 15 574

CV-990 28, 31, 37 220, 290, 380

Table 1 indicates the five aircraft for which data were available.
The DC-6, USC-130, L-188 took data samples every second and the CV-990
every two seconds during their flights. Wind components, ambient and
dew point temperatures and atmospheric pressure were the principal para-
meters measured. The I1-18C did not have the capability of measuring
humidity and data values were given every minute only.

Individual data values were given quality flags and are shown in

Table 2.



Table 2. Quality flags for aircraft data.

FLAG DESCRIPTION

1 0.K.

2 Machine flagged questionable - annotator says 0.K.

3 Unvalidated

4 Machine flagged questionable

5 Annotator flagged questionable (not flagged by machine)
6 Before take-off and after landing

9 Missing data

(b) Rawinsonde data:

During the intensive periods of the experiment most of the ships in
the A/B, B and C-scale arrays launched rawinsondes every three hours and
every six hours at other times. Processed data from the U.S.S.R. ships
contained parameters at standard and significant levels only while the
Canadian and U.S.A. ships contained all dynamic and thermodynamic para-
meters at 5 mb intervals. These data have been generated from the raw
data using a series of processing steps, (see Rasmusson et al., 1976).
Several surface reports from merchant ships in the area have been used
to fill in data-sparse regions in the arrays.

(c) Radar data:

Approximate locations of the areas of convection were found from
photographs of the radar-scope from Oceanographer, Meteor, Researcher
and Quadra. This product gave only two intensity levels at best. More

accurate locations of the convection were found from a higher quality
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product from Quadra showing both precipitation intensity and echo-top
height in digital form. Scans were available at fifteen minute inter-
vals throughout the day making it possible to quantitatively describe
the time-histdry of the convection in the region of interest. Further
data processing yielded radar cross-sections of precipitation intensity
along 22.8°W (flight track). The range of the§Quadra radar is 200 km
giving adequate coverage over the region of 1ﬁterest‘ |

(d) Satellite data:

SMS-1 gridded images on 35 mm microfilm hayve been used with resolu-
tions of 0.5, 1 and 2 nm, and typical images at 0.5 nm resolution are
shown later. Another product giving satellite brightness values in
digital form for a specified area are also shown.

(e) BLIS, boom and mast data:

The BLIS consists of a four second time series. Dry bulb and wet
bulb temperatures, relative humidity and atmospheric pressure were com-
puted once every four seconds. The wind speed and direction and tilt
angle were sampled once every two seconds. The set contains a time
series of all measurements; that is, the four second data taken during
the fixed level mode or constant level mode. Finally, the data have
been averaged in three minute and hourly blocks and are at four differ-
ent levels (995, 970, 950, 910 mb) for this day.

A similar procedure was applied to the ship boom data. The boom
was located approximately 10 m above the sea surface. In addition, all
radiation parameters are given. Data will be presented at the time when
the southern line passed over the Dallas andhwill be used to further

supplement and confirm the aircraft data relative to the same line.
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Table 3. Comparison of averaging methods for 'Dallas'
0300Z 245.
Level 25 mb 50 mb. 60 sec 120 sec Observed
u v u v u v u v u v
. .ms-] .

1000 2.2 -3.7 2.1 -4.0 2.2 -4.0 2.1 -3.8 2.1 -4.3
850 1.9 -3.5 0.9 -3.6 1.6 -3.5 0.8 -3.7 2.4 -3.2
700 -4.1 -1.7 -4.5 -1.6 -4.1 -1.7 -4.3 -1.6 -3.1 -1.4
640 -6.6 -0.5 -5.5 -0.6 -6.6 -0.5 -5.6 -0.5 -7.4 -0.4
500 -6.9 -7.2 -5.4 -7.3 -6.9 -7.2 -6.3 -7.3 -7.2 -7.2
200 -11.8 3.4 -11.3 4.1 -9.9 2.7 -11.8 3.4 -9.9 2.7
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1.6 Further data reduction

This section describes the averaging and convection methods applied
to these data by the author. The reader will recall that these dafa
have been subject to a number of quality checks and processing routines
prior to archiving. For a complete discussion see Acheson (1974);
Rasmusson et al. (1976).

(a) Rawinsonde data:

A method for smoothing out wild data points in the wind components
is to perform some sort of block averaging process in the vertical.

Four block averages (25 mb, 50 mb, 60 sec and 120 sec) were performed on
the 0300Z, 245 sounding from Dallas, the results from which are shown in
Table 3. The 'observed' column indicates the 5 mb data at the level in
question. The zonal wind component is seen to be slightly more sensi-
tive to the averaging process in that the differences between the aver-
aged values are relatively large. However, the differences between the
averaged values are generally < 1.5 ms_] wh;ch is thought to be less
than the observational error. Hence, a 25 mb average was thought to be
adequate enough to smooth out wild data points and small enough to pre-
serve natural variations in the wind profiles.

(b) Aircraft data:

As stated in the previous section, the aircraft data consists of
one second values of all parameters with the exception of the IL-18C
which only gives wind components at various points along its track,
usually every minute and the CV-990 reportiqg values at two second in-

&
e 1
tervals. .

To eliminate a large volume of data and smooth out most of the

'noise' but still preserve natural features in the data, ten second
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block averages were taken with poor quality data deleted from the aver-

age. With the Tow-level aircraft flying at 100 ms'] and the high level

at 200 ms”]

, this corresponds to an approximate space scale of approx-
imately 1 km and 2 km respectively.

Data with flags 1, 2, 3 and 4 have been included in the ten second
averages. If less than three good data values appeared in the average,
that average was flagged as questionable by the computer and was used in
the analysis with caution. However, in regions of active convection,
where large horizontal gradients are known to exist, the annotator's
flags may be too restrictive.

There was the additional problem of the apparent change in the
wind vector when the aircraft changes heading. A series of parameters
measured on board the aircraft (each of which are subject to at least
one source of error) are used to determine the wind vector. These

parameters and their corresponding sources of error are given in Table

4. (See also Grossman, 1976).

Table 4. Sources of errors in parameters
from which wind is derived.

PARAMETER SOURCE(S) OF ERROR
True Air Speed Dynamic pressure
Static pressure
Temperature
Ground Speed Calibration
True Heading Compass reading
True Track ) Drift angle reading

True heading reading
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Errors in the wind vectors before and after all corners were par-

ticularly noticeable with the L-188 and CV-990. See Table 5.

Table 5. Differences in wind components before
and after corners for CV-990 and L-188.

F
]

A/C CORNER Au Av

- (ms_]) =

CV-990 1 o
2 4.0
3 .1 === R
4 08 AV=29+3.1ms
5 2.7
6 8.5

L-188 1 7i 903"
- 57 2.0 — _ -1
3 7.6 0.7 Au= 6.8 + 0.8 ms
4 7.7 0.3 =, -1
5 6.9 0.6 :f‘v = 0.9+ 0.7 ms
6 6:3 - 1.8%)
7 6.0 0.4

Au - change in u after completing a maneuver
Av - change in v after completing a maneuver
For the CV-990 there was no systematic change in u and so this has

not been included in the table. For the above calculations, ten data
points were used on either side of the corner for both aircraft. This
corresponds to 10 km on either side for the L-188 and 20 km for the
CV-990. Each pair of wind components were Qhosen so that they occurred
at the same latitudes and the wind field was assumed to remain station-
ary in time and homogeneous in space. Since each leg was in the north-

south direction, it becomes a simple task to correct the wind components



-15-

by taking half the difference (Au/2, Av/2) and then adding Au/2 to the
u components on one leg and substracting Au/2 from the u components on
the other leg, and similarly for v.

A more sophisticated method for correcting the winds has been used
by Ruiz (1975), which uses a simple vector triangle to compute directly
the true airspeed error and drift angle error from which the required
corrections can be easily computed. This program was developad for an

aircraft cloverleaf pattern.

1

In this study, the corrections remove about 2.5 ms  of hias error

from the measured wind. Residual errors of 1 ms'1 for the L-188 and

-} for the CV-990 are probably still present after correction.

2 ms
There were no observable bias errors in the wind vectors for both the

DC-6 and the USC-130.



IT. SYNOPTIC-SCALE PICTURE

Satellite images from the SMS-1 are presented in Figures 2-4.
Figure 2 shows there to be an active vortex off the coast of West Africa
which is obscured by a dense layer of cirrus. Associated with this vor-
tex are several feeder bands orientated NNE, SSW. The most pronounced
of which is located directly over 'Oceanographer’'. The two Tines (A and
B) through which the aircraft flew repeated legs are clearly visible to
the west of 'Quadra' within the C-scale array. It appears as if they
are components of this synoptic-scale system and their motion may be
closely related to the large-scale flow. However, this is beyond the
scope of this study since we are merely attempting to describe their
characteristics. Figure 3 shows the lines just prior to their maximum
intensity and both have moved in a southerly direction towards the
southernmost cloud mass which can tentatively be called the ITCZ. Fig-
ure 4 again shows the lines at 1700Z when most of the A/B-scale array
is covered by a thick Tlayer of cirrus which is the product of the pre-
vious active convection. The complete system is now termed a cloud-
cluster, the large-scale features of which have been extensively
studied by Gray and numerous other authors,

In order to show consistency with other data products, digital
scans from ‘'Oceanographer' and 'Quadra' radar are shown in Figures &
and 6. These show the 1lines with the cirrus canopy absent and are wz1l
represented on the 'Cceanographer' radar at 1500Z in Figure 5. At taic
time the southern line appears to be much more active - especially at
its 'leading' edge than does the northern line which is located to the

NW of the scan. This fact is also shown in the data presented later.
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s

01-A-H 0543 2630 A1 DAK 6A4 CH1

Figure 2. Visible photograph from SMS-1 satellite at
1300zZ. .
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15:00 245:34 01-A-H 0543 2650 A1 DAK 6ad
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Figure 3. Visible photograph from SMS-1 satellite at
1500Z.
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18200 245 2650 41 DAK 684 CHI

Figure 4. ¥isib1e photograph from SMS-1 satellite at
800Z.
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155 GATE DIGITIZED RADAR DATA
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Oceanographer radar 1500Z.

Figure 5.
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Figure 6. Quadra radar precipitation intensities at 1500Z.
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Figure 7 presents the results of a synoptic-scale study of Day 245
by Reeves and Ropelewski, 1976. The profiles are vorticity and diver-
gence obtained from the Dallas, Oceanographer%and Researcher triangle
and were computed from both the BLIS (tethered balloon) and rawinsonde
data. Although the profiles extend to only 880 mb, it can be seen that
there is low level convergence with cyclonic vorticity in the region of
active convection. This will be substantiated in a later section of
this paper.

In addition, Figures 8, 9 and 10 show the streamline analysis for
1200Z. The analysis covers the A/B-scale ship array and with the ex-
ception of the surface analysis, the wind vectors are averaged over 25
mb. Aircraft winds have also been plotted ata time when the aircraft
were closest to that level. The surface, 700 mb and 200 mb levels are
presented. Basically, at the surface there is a sharp convergence zone
in the south of the B-scale array with convergence into a vortex just
to the west of 'Quadra'. This convergence zone can be regarded as the
location of the ITCZ for this day. There is southerly flow into the
ITCZ, the air being of southern hemispheric origin. The flow to the
north is uniform and from the NE. Winds from the 'Vanguard' and
'Gillis' are in a direction opposed to neighboring stations and are
inflow to another system.

At 700 mb the flow is more easterly and the convergence zone much
less intense. The mesoscale vortex to the north of 'Oceanographer' is
based upon one observation only and so its existence is rather question-
able. At 200 mb a ridge in the flow is located over the B-scale array.
There appears to be a large vertical shear of the flow between the sur-

face and 700 mb with somewhat weaker shear above this. When the
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satellite winds become available for this day, it should fill in data-
sparse areas and provide a more reliable analysis.

Fifteen minute scans for the 'Quadra’ radar are available through-
out most of the day and show precipitation intensities and cloud-top
heights, an example of which was given in Figure 6. To place a numeri-
cal value on the intensity of each 1ine, the cloud-top heights within
0.5° latitude, longitude squares, centered on the point where the air-
craft crossed the leading edge of the lines, have been averaged and
plotted against time. Also plotted are the maximum cloud-top heights
observed within the squares (see Figures 11 and 12).

It is interesting to see that the mean cloud-top height for both
1ines reached a maximum value of = 7.5 km at 1700Z. The southern line
begins to intensify at 1100Z (about one hour before the northern line).
Both dissipated at 2300Z. Generally speaking, the growth time is equal
to the dissipation time and is approximately six hours.

The last piece of 'visual' data available is the satellite bright-
ness values from the SMS-1 which are shown in Figures 13 and 14 for
1200Z and 1600Z. It is very difficult to define cloud boundaries using
these data because the threshold values for cloud type have not yet been
determined. However, the technique employed here was to look for re-
gions of maximum brightness gradient. Both 1lines were, however, located
reasonably accurately. The vertical 1ine through both figures repre-
sents the aircraft track close to the indicated time and shows that the
track passes through the most active portion of the southern 1line but
passes between two active cells in the northern line and this 1s the
reason why sections through the southern line only are presented here

(see Tater).
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Figure 13. SMS-1 satellite brightness data for 1200Z.
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Notice that the brightness values at 1600Z are higher than those
at 1200Z indicating the presence of cirrus in the upper troposphere.
The satellite image in Figure 3 shows the T1ine (C) located over the
Oceanographer to be active, but the precipitation intensities from both
the Oceanographer and Quadra radars are weak, and so Tine C is probably
in its decaying stage at this time with a covering of dense cirrus in

the upper troposphere.



III. PHYSICAL FEATURES OF THE LINES

This section presents a detailed analysis of the southern line only
based on the ten second aircraft data and three minute BLIS and boom
data. A1l data have been plotted relative to the Tine and take the form
of cross-sections through the 1ine. The Dallas BLIS data and vertical
profiles from aircraft data both ahead of and behind the line have been
used to diagnose some of the dynamic and thermodynamic transformations

of the environment effected by the Tine.

3.1 Quadra radar cross-sections

Figure 15 shows the digital cross-sections of the Quadra radar
along the flight trace (22.8°W). Three frames are presented for 12297,
13297 and 15297.

Precipitation intensities are coded from O to N and are based on

the following reflectivity rainfall-rate relationship

_ 1.8
Ze = 232 R

where Z, - equivalent reflectivity factor (mm6/m3)

R - rainfall rate (mm/hr).
The conversion is given in Table 6. The spacing between the Tines re-
mains fairly constant throughout their 1ife-cycle and has a magnitude
of approximately 60-70 km. The progression southwards of the northern
Tine (A), the southern 1ine (B) and the feeder band to the vortex off

Dakar (C) mentioned earlier can be easily seen. Precipitation
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intensities near the southern edge of the southern line support the

Oceanographer radar which shows the maximum intensity at the leading

edge. This should be in close proximity to the main updraft.

Table 6. Rainfall rates from Z-R relationship.

SYMBOL RA%ﬂEﬁht)RATE SYMBOL RA%m;?ht)RATE

3 0.00 8 2.10

1 0.10 B 3.05

2 0.14 c 4.40

i 3 0.17 D 6.34
4 0.24 E 9.17

| 5 0.31 F 13.25
! 6 0.46 G 19.20
7 0.68 H 27.72

8 0.98 K 40.05

9 1.44 L 57.89

M 83.71

N 120.99
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A feature common to all these radar sections on this day is the

break in the precipitation some distance away from the leading edge.
At 1229Z, 1ine B shows two such breaks in the precipitation. A possible
explanation for these is the generation of new cells at the leading edge
of the line. The cells to the rear (north) of the leading edge indicate
generally lower precipitation intensities and are probably in a state of
decay.

The northern Tine (A) does not appear to be particularly well de-
veloped along 22.8°W being only slightly visible at 1229Z. This agrees
well with the satellite brightness data at 1200Z and 1600Z in Figures 13
and 14,

In summary then the Quadra radar data provides useful quantitative
information on the location of the leading edges of the convection and
~gives a value for the quantity of precipitation that these systems are

capable of producing.

3.2 Aircraft cross-sections

Figures 16 (a) and (b) show the unaveraged one second values of
temperature and dew point and 1iquid water content traces respectively
as the DC-6 completes one run from south to north through both lines.
At around 1510Z the dew point becomes equal to the ambient air tempera-
ture while at the same time there is a sharp peak in the Tiquid water
content. The same happens at 1527Z., This sequence of events indicates
that the aircraft crosses the 'leading' edges of the 1ines. In between
these events the aircraft passes through some relatively unsaturated air

between the 1ines.
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On the four aircraft tracks presented in Figure 17 are plotted wind
vectors. These diagrams represent two hours of flight from 1331Z to
1530Z, each leg being of thirty minutes duration. Evident on each leg
is a strong wind shift in the vicinity of the southern Tine. This is
most evident at the later time where to the south of the line the winds
are westerly and to the north the winds are easterly (almost a 180°
change). The wind shifts are not so detectable near the northern line
since its most active portion was not traversed by the aircraft. The
importance of the wind shift is discussed in a later section.

The following chapters are biased towards a detailed study of the

southern Tine only.

3.3 Line travel speeds

The following section discusses the procedure to compensate for the
fact that the aircraft were flying at different speeds and consequently,
were not stacked vertically in space.

Since the aircraft were flying at different altitudes they tra-
versed different parts of the 1ine. For example, the DC~6 which was
flying in the boundary layer traversed the surface gust front on each
pass through the 1ine. The wind data from this aircraft, therefore,
yields an accurate fix on the gust front in both time and space. On
each successive pass the progression of the gust front (in time and
space) was monitored. In a similar fashion the CV-99Q which was flying
in the upper troposphere, traversed the towers on each pass. A summary
of the data sources and the associated features of the 1ine which they

sample are given in Table 7.
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Table 7. Data sources and their associated features.

DATA SOURCE . : FEATURE
DC-6 Surface wind shift
(gust front)

L-188 Specific humidity jump

UsC-130 O increase and towers

CV-990 Towers

Quadra radar Southern edge of
precipitation

Dallas boom Temperature drop and

‘ wind shift

These features of the lines have been plotted in space and time in
Figures 18 and 19. Both figures indicate the surface gust front to be
located a few kilometers to the south of the towers. If the slope of
the 1ine of least-squares fit is computed it will yield a mean travel

1

speed for the line as a whole, Line A propajates at 5.9 + 0.1 ms™" to

the south and 1ine B at 6.1 + 0.1 ms™ .

By piotting data relative to
the Tine of least-squares fit the propagation of the 1ine was accounted
for.

In physical terms the line of least-squares fit corresponds to a
plane in space located a few kilometers to the north of the surface gust
front and a similar distance to the south of the towers.

3.4 Cross-sections through the southern 1ine from boom and aircraft
data

Both the ten second aircraft data and three minute boom data from

the Dallas have been plotted relative to the plane of least-squares fit
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(see earlier). Each aircraft made several runs through the line at

at least one altitude. The number of runs is shown in Table 8.

Table 8. Number of runs with good data at each
level for both Tines.

Aircraft Pressure Number of Runs
(mb) Line A Line B
DC-6 985 3 2
970 1 2
945 2 2
L-188 200 2 4
810 3 4
Usc-130 720 2 2
640 5 7
11-18C 574 5 5
CV-990 380 2 2
290 K 3
220 4 4

Cross-sections through the line are shown in the series of Figures
20-26. The distance scale on the abscissa represents distance in kilo-
meters relative to the plane of least-squares fit. Figures 20 and 21
show the passage of the southern Tine over the 'Dallas' at ~ 1345Z. The
plots are derived from the three minute boom data and so differ from
the other figures in the sense that each point represents just one data
value whereas the other figures are composites.

The diurnal incoming solar radiation curve shows a sharp decrease

2 2

from over 1000 Wm < to 400 Wm < at the onset of the surface gust front.
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At the same instant is a small but detectable pressure drop of ~ 0.6 mb
in twelve minutes, accompanied by a decrease in the height of the LCL of
about 150 metres.

The parameters shown in Figure 21 indicate a large change in Op
across the line of at least 7°K. This is a combination of both a tem-
perature decrease of 1.5°K and a specific humidity decrease of 2 g/Kg.
Another noticeable feature at this level (surface) is the Targe wind
shift at the surface where v changes by 6 ms'] in a small time period.
Taking this change in v from south to north (y increasing) gives an
estimate of the 2-dimensional convergence at the gust front and it is
approximately 1.4x1073 57T,

The u wind component is also interesting because to the south of
the 1ine it is positive (westerly) and to the north of the Tine it is
negative (easterly). This confirms the wind shifts seen in Figure 17
and suggests that there is cyclonic vorticity across the line of magni-
tude 1.6X107% 7.

The difference between the v component tB the south of the Tine
and the line travel speed shows there to be about 4 ms—] of inflow into
the 1ine from the south and similarly on the north side there appears to
be a similar magnitude of outflow. However, the gust front is travel-
ling at the speed of the Tine and perhaps a little faster.

Local minima in 6 at 8 km and 20 km north of the line are the
result of downdraft activity, the origin of which will be discussed
later.

From this cross-section alone then we can deduce that there is

sharp convergence of warm, moist air into the line from the south with
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also been observed by Zipser 1977. The shift in the wind field may be
the most important feature of this line. The spreading out of the down-
draft (or density current) when it reaches the surface is a likely
source for the observed divergence. A likely source for the downdraft
air is in the layer between 900 and 800 mb ahead of the line. For this

we have to assume that the air parcels descend conserving O

3.5 Cloud - subcloud layer features

In order to study processes operating at low levels, the tethered
balloon data from 'Dallas' was employed. These data give dense coverage
from the surface to 900 mb. Unfortunately, the measurements of wet bulb
temperature were beset with problems during the field phase and are in-
compatible with the relative humidity measurements. The wick used for
wet-bulb measurements was often contaminated with sea-salt and periodi-
cally dried out. There were also some electronic problems with the re-
cording devices, thereby causing the values to ‘stick' and have some
preferred values (Ropelewski 1977 - personal communication).

Another rather common occurrence evident throughout many of the
BLIS data is rainwater seeping into the instrumentation producing arti-
ficially low humidity values. Comparison with rawinsondes launched on
other days from Dallas indicate mixing ratio differences as much as 5
g/Kg and the instruments appear to take a long time to recover. On this
day only 1 mm of precipitation fell at the Dallas and the author feels
that this problem is not evident in the data presented here,

Figure 28 shows a time section acress the line for the u and v
wind components. There is a large wind shift at 995 mb in both u and v

across the line. This shift appears to be confined to a shallow layer
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an observed cooling and drying to the rear as a result of downdraft
activity.

Figures 22-27 represent the composited aircraft data at levels
985, 960, 900, 810, 720 and 640 mb, respectively. The 960 mb level is
actually a mean of the 970 and 945 mb levels flown by the DC-6. This
is permissible because both levels showed similar features at the same
location relative to the line. It is interesting to note that the depth
of the layer of cooling is confined to a layer near the surface because
a change in o is not observed at any level other than the surface and
985 mb. It would, therefore, be unwise to place this line in the same
category as a squall-line owing to its relatively 'mild' nature.

The wind shift at 985 mb and 960 mb is still very much present as
well as moist inflow air. The Tocal 6 minimum is also evident at 960
mb although its amplitude has been damped slightly. The decrease in 6
across the Tine at 900 mb is somewhat less ~ 3°K. At and above 810 mb
the trend in o js in the opposite sense in that the outflow air is of
higher 6p. This is due to a gradual rise in q which is a result of meso-
scale uplift behind the Tine. Superimposed on the general trend of o
(or q) in the outflow are one or two local maxima associated with the
existence of growing cumulus towers. Another common feature of Figures
22-27 is that the inflow and outflow to the T1ine are nearly constant
with height (block flow). The large, local gradients in the wind com-
ponents are not observed above the 900 mb Tevel. From the surface to
900 mb though there is strong convergence in the inflow and considering
the zonal wind component, there is evidence of 2-dimensional positive
(or cyclonic) vorticity up to at least 800 mb. The strong convergence

just ahead of the line and somewhat weaker divergence to the rear has
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near the surface because the same feature is not observed at 950 mb and
910 mb and, indeed, the general trend across the 1ine is reversed at
these levels in contrast to the DC-6 and L-188. However, the BLIS system
did experience problems with the wind direction sensor. The surface
shift lends support to the DC-6 and Dallas boom at the lowest level only.
There is large low-level vertical shear in both components. The 2-

dimensional convergence near the leading edge of this line is 1.2X1O'3

sec'] and is of the same order as computed from the other data sets. By
mentally averaging values on either side we see that the 1ine is embedded
in a larger scale convergent and cyclonic surface wind field.

Figures 29 and 30 show o¢ and 6 relative to the line respectively.
The dominant feature in Figure 29 is the tongue of low o (warm, but dry)
air just behind the surface gust front. This feature was not observed by
either the DC-6 or the L-188, both of which were flying about 20 km to the
west of Dallas. However, the DC-6 was flying at 945 mb at 1500Z only and
so it is possible that this is a relatively short-l1ived feature and occurs
locally. Although no supportive evidence is available, it is 1ikely that
this is not instrumental because recovery is rather rapid. The origin
then of this feature is compensating subsidence (dry adiabatic descent)
around active towers. Comparison of the position of this tongue with
the sharp fall in incoming solar radiation in Figure 20, it can be seen
that the tongue is lacated immediately to the north of the minimum and
so this descent is probably accompanied by lower cloudiness.

About 15 km to the rear of the line is another local fall in o
resulting from a downdraft which spreads as it reaches the surface and
moves southwards, the southernmost boundary being the surface gust

front. This, in turn, forces air of high O out of the sub-cloud layer
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into the main updraft. With a block inflow of ~ 4 ms™! at all levels,
this downdraft must be fed by air flowing into the Tine from the south.
It is not descent between neighboring cells and is in no way associated
with the tongue of dry air south of the line.

Figure 30 shows again that the descending air is associated with
slightly higher temperatures (a result of dynamical descent) and the
temperature drop across the line is about 1.5°C.

In conclusion, although the numerical values for the tethered bal-
loon data may be slightly suspect, there js strong agreement between the
three data sets discussed thus far, i.e. surface, aircraft and tethered

balloon.

3.6 Vertical profiles

There have been several studies of squall-line systems based on
'‘before’ and 'after' profiles using rawinsonde data, e.g. Betts, Grover
and Moncrieff (1976); Betts (1976). It will, therefore, be instructive
to construct vertical profiles representing mean inflow and outflow to
the southern line.

The data from the Dallas boom and the aircraft shown in Figures 20-
27 were averaged in the inflow and outflow regions. The averages, which
were performed over distances of ~ 35 km where possible, are thought to
be representatiyve of mean conditions in each region. Regions very close
to the 1ine at the surface where large gradients are observed have been
omitted from the average.

It is important to note that most aircraft made sections through
the Tline at at Teast two different levels and so data are not sampled

simultaneously at each level. Consequently, data sampled on the first
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traverse may possess different numerical values than data sampled at a
later time. It is desirable, therefore, to examine the data for a trend
in time and to correct for this by extrapolating to a common time before
performing the average.

A11 parameters on both sides of the 1ine were averaged and plotted
against time. A trend was only observed in the wind components u and v
and in both cases, the components appear to become more positive with
time thus making it a simple matter to extrapolate to a common time - in

this case, 1330Z. The corrections are found in Table 9.

Table 9. Corrections for the trends in u and v.

CORRECTION FOR TREND

LEVEL LINE A LINE B
u v u v
~(ms™")- ~(ms™!)-
sfc - - 0 0
985 +0.8 +0.4 -0.8 -0.5
969 - - 10 +0.5
946 -1.3 -1.1 -2.3 -1.8
903 0 0 +0.2 +0.4
810 -0.1 -0.5 -1.1 -0.8
720 0 +0.1 0 -0.6
640 0 -0.2 +0.8 +0.7
380 0 0 0 0
290 0 0 0
220 0 0

3.6.1 Wind profiles
Figures 31-35 show the vertical profiles of all parameters for in-

flow (south of 1ine) and outflow (north of line).
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The u wind component shows weak surface westerlies ahead of the
lTine. A large decrease in westerly momentum (~ 3-4 ms']) is observed
throughout a relatively deep layer from the surface to 750 mb. Above
300 mb the easterly flow increases rapidly with height.

The v wind component shows an increase in the northerly component

! from the surface to 700 mb. Only at the highest Tevel do

of v 2 ms™
we observe a southerly component. Both figures indicate 1ittle or no
vertical shear in either component throughout most of the troposphere.
At no level does v become equal to the 1ine travel speed. Consequently,
these are not steering-level systems. This contradicts a statement made
by Pestaina-Haynes and Austin (1976).

Raymond (1975) represented a convective storm as a wave packet of
forced internal gravity waves. The gravity waves are able to produce
low-Tevel convergence which, in turn, drives the wave itself. This
model is capable of predicting accurate storm travel speeds, thereby

eliminating any requirement for a steering-level. The low-level shear

may, however, be a more fundamental feature for their propagation.

3.6.2 Thermodynamic profiles

Figures 33-35 show the distribution of the thermodynamic variables.
Figure 33 indicates a drying of 2 g/kg in the lower troposphere with
compensating moistening above. This change in the sub-cloud layer is
also observed in the 'Dallas' BLIS data and similar trends have also
been observed by Betts (1976) in VIMHEX but of larger magnitude. This
lends support to the assertion that the atmosphere is overturned by
mixing processes on the scale of the system (see Moncrieff and Green,

1972).
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Figure 34 indicates a cooling of 1.5°K confined to a shallow layer
near the surface (250 m) with a slight warming trend above. No trend is
observed at levels higher than this. The depth of the layer of cooling
gives an indication of the depth of the outflowing, cold ‘density'
current.

The changes in O which are simply a composite of the changes in 6
and q indicate a large decrease in the mixed layer of ~ 5°K and an in-
crease of similar magnitude throughout the rest of the troposphere.
This increase can be caused by mesoscale ascent to the rear of the line
or simply higher humidity values in cloud (see Zipser, 1977). The
large decrease in the mixed layer is the result of downdraft activity
discussed earlier.

Generally speaking, these profiles agree well with the Dallas BLIS
data in Tow-levels thus enabling high confidence to be placed on the

qualitative arguments presented in this section,

3.6.3 Vorticity and divergence

As previously stated, the vorticity and divergence in the wind
field is probably fundamental to the formation and maintenance of lines
of this nature. The difference between the u and v profiles yields val-
ues for the 2-dimensional vorticity and 2-dimensional divergence respec-
tively. The differences between profiles at 25 mb intervals were taken
and they are shown in Figures 36 and 37.

Figure 36 shows that the divergence profile for the northern line
does not satisfy mass-balance. This is probably because on earlier
traverses the aircraft went through less active parts of the line. For

the southern line, however, Figure 36 indicates strong convergence from
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4

the surface to 700 mb (» 107 s'1) with divergence in the middle tropo-

sphere (.5X10"4 s_]) and convergence aloft giving approximate mass-
balance. Here we are considering mean values over a distance of approx-
ihately 60 km.'}[Thé sharp convefgence (~ 1073 5'1) just ahead of the
line and the divergence to the rear partly cancel].

Figure 37 shows there to be a 'layered structure' in the vertical
distribution of 2-dimensional vorticity with cyclonic vorticity from
4 s—ie

the surface to 750 mb (~ 1.5X10° ).

The low-level values of both divergence and vorticity agree quali-
tatively with the synoptic-scale profiies of Reeves and Ropelewski 1976.
Their values are one order of magnitude smaller, as expected, with con-
vergence of ~ 2X107° s'] and cyclonic vorticity of ~ 5X107° sf]. (See
Figure 7).

The general features in this section are summarized in Table 10.

Table 10. Characteristics of layers associated with
this 1ine of convection.

LAYER CHARACTERISTICS

(mb)

sfc - 750 Convergent, cyclonic
- cools and dries
750 - 500 Divergent, irrotational
moistens

500 - 300 Divergent, weak cyclonic

. moistens

300 - 200 Convergent, anticyclonic
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3.6.4 Discussion

The wind shift (being the most important feature of this line) is
probably the source of maintenance and propagation. The convergent and
cyclonic wind field, from the surface to 750 mb, in which the line is
embedded provides a mechanism whereby warm, moist air in the sub-cloud
layer is able to be fed into the system. The downdraft to the rear,
which forms the gust front at the 'leading' edge of the 1ine, provides
an additional impetus to this air. The southerly propagation of the
downdraft as it reaches the surface is thought to be the source of the
observed convergence and is, therefore, a necessary component of the
line.

Figure 38 shows the aircraft data in the inflow region plotted on a
tephigram. The atmosphere in mid-levels is relatively moist with a
mixing ratio of 6 g/kg at 650 mb. Large mid-level humidity is favor-
able to deep cumulus convection (a dry enyironment destroys buoyancy by
entrainment into the cloud). Consequently, clouds during GATE frequent-
ly reached the upper troposphere with 1ittle vertical motion associated
with them. This is a possible reason why cloud-tops in this study

reached the 200 mb level.

3.7 Density current model
It is now of interest to see if a realistic travel speed for the
southern line can be predicted from a simple density current model

formulated by Miller and Betts (1977).
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where Cp N
g éeg v
H n
A "
3] N
g b
using g =
AB =
9 =
H =
gives Cp =

Now if the line

T3

density current speed

buoyancy deficit

depth of the density current

observed potential temperature drop at the surface
mean potential temperature within the density current
acceleration of gravity

9.81 ms™2
1.2°K
298.3°K
232 metre
-3.03 ms™.

travel speed is C and the mean velocity ahead of the

Tine is 76 (Miller and Betts, 1977) then

C = 0.42V_ + 0.83C
0 p

which gives, upon substitution, C ~ -3.5 ms"1 which falls far short of

the observed 6 ms™ .

L It can only be concluded that the density current

model applies only to the more intense Venezuelan squall-lines where the

formation of a strong density current (or downdraft) is a necessary in-

gredient to their maintenance.



IV. DATA INTERCOMPARISON

4.1 Aircraft and Quadra radar

The digital cross-sections from the Quadra radar along 22.8°W at
1214Z, 12297 and 1314Z are compared to the ten second averaged data from
the USC-130. The comparisons in Figure 39 are at a level of 4 km and
consist of precipitation intensity (R) and specific humidity (q) from
both systems for the southern line. The aircraft data were chosen so
that they were closest in both space and time to the radar sections. At
worst, the USC-130 was flying 5 km to the west of the sections. A char-
acteristic feature of the precipitation data is that it is highly vari-
able in space and, therefore, varies greatly from one grid point to the
next. Since the grid spacing is 2 km for the Quadra radar, this could
explain the small discrepancies between the two data sets. However,
there appears to be a strong correlation between q and R at all times
presented here. The vertical dashed 1ine represents the RMS position of
the southern edge of the line and the radar fix on this position is
within two grid spaces. The observers' reports have also been included
and they, too, show excellent agreement. The Quadra radar data will,

therefore, be a useful tgol in further case studies.

4.2 Dallas BLIS - aircraft - Dallas boom

Aircraft point values were taken every time the aircraft crossed
the latitude of the Dallas. Data from the BLIS and boom are averages of
three, three minute values and correspond to approximately 3 km in space.
A similar space average was calculated for the aircraft which involved
taking three adjscent ten second averages, Values from all three

sources were compared and tabulated at approximately the same levels.
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Table 11 shows the wind intercomparison.

Table 11. 3 km mean wind intercomparison.

DALLAS BLIS - AIRCRAFT DALLAS BOOM

(9 minav) | (30 sec av) | (9 min av) °
TIME DIR SP DIR SP DIR SP LEVEL

7 dég ms™) .,:deg,.'ms'1.: dte ms™V :'BLIS/?QggBOOM

1230 189 3.1 125 3.8 910/903/sfc
1348 228 5.5 170 4.4 1856 5.3 995/985/sfc
1357 225 1.0 261 4.0 910/903/sfc
1400 231 4.4 185 5.1 195 5.0 995/985/sfc
1406 217 1.0 265 3.1 910/903/sfc
1454 239 2.1 193 1.8 950/945/sfc
1515 229 2.8 184 1.6 : 950/945/sfc

The agreement of the wind speed for all three systems is good
generally but the BLIS data shows a large discrepancy in the wind direc-
tion. The wind direction data are contaminated by high-frequency noise

(Ropelewski 1976).

If e = (DIR)p 1g = (DIR)prpeRarT
and av = (SP)g 15 = (SP)arpcrarT
then ha = 25° + 45°

™ = -.06+1.6ms".

The small difference between the boom and aircraft winds is pro-
bably the result of wind shear between the surface and 985 mb.
A similar ayeraging procedure was performed on q and 6 showing

the agreement to be reasonably good (see Table 12).



-77-

Table 12. 3 km mean specific humidity and potential
temperature intercomparison.

B _DALLAS BLIS ~ ~~ "AIRCRAFT ' 'DALLAS BOOM
TIME q e q 0 q G LEVEL
BLIS/A/C/BOOM
g/kg . °K... .. g/kg... °K.. . ...g/kg... . °K....... . .(mb)

1230 14.4 301.4 14.1 301.5 910/902/sfc
1257 17.4 299.6 16.5 298.6 970/970/sfc
1300 17.3  299.6 16.9 298.6 970/970/sfc
1348 16.0 298.4 16.4 298.5 16.6 297.6 995/985/sfc
1357 13.4 302.6 14.4 301.5 910/903/sfc
1400 16.0 297.8 17.4 297.8 16.4 297.4 995/985/sfc
1406 13.6 302.1 14.7 301.2 910/903/sfc
1454 16.2 300.4 15.7 300.3 950/945/sfc
1515 15.3 . 300.6 15.4. . .300.3 ..950/945/sfc

Similarly, 29 = (a)g 15 - (@arRcRAFT

and 20 = (8)g 15 = (®arRcRAFT
Aq = -.02 + 0.9 g/kg
A6 = 0.5 + 0.5 °K.

In tropical regions, differences of this order (in q and 8) are
frequently observed locally and so the standard deviations listed above

are acceptable.

4.3 BLIS, aircraft and rawinsonde data

Figures 40 and 41 show the data from the Dallas 1221Z sounding,
Dallas BLIS at 1221Z, Dallas boom at 12217 and aircraft averages. At
this time the Dallas was in the inflow to the southern line. Both air-
craft averages are shown i.e. the larger-scale (~ 30 km) averages and

the point (& 3 km) averages mentioned earlier. A1l systems substantiate
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the statement made earlier that the thermodynamic measurements are in
close agreement. Both aircraft averages are within 0.5°K of each other.

A similar procedure was applied for the Quadra 1202Z and 1505Z
soundings. At both times the ship was in the outflow to the southern
line. The results are presented in Figures 42 and 43. The averages
appear to be rather drier than the rawinsonde in the mixed layer but
this is not too discouraging since the Quadra data in the mixed layer
appears to be slightly suspect in this case.

Great potential existed for computing average wind profiles in the
inflow and outflow regions of the 1ine but unfortunately, most data were
found to be unrepresentative, missing or physically unrealistic. Sound-
ings from Dallas (1221Z, 1502Z), Quadra (1202Z, 1505Z) and (ceanographer
(15042) had large amounts of wind data missing and in most cases, re-
ported the surface wind only. Oceanographer (1200Z) and all Meteor
soundings were bad and Vize (1430Z, 2030Z) were found to be unrepresen-
tative, being in an area showing very little convective activity in
their vicinity. One representative sounding in the inflow to the
southern 1ine from Vize at 1130Z is compared to the thirty second air-
craft winds in its vicinity and presented in Figures 44 and 45.

The zonal wind component shows good general agreement even though
the aircraft values were taken as much as one hour after the rawinsonde
launch time in some cases. The peak at 700 mb of - 8 ms_1 shown in the
rawinsonde profile is also found in the aircraft data at that level.

The aircraft profile peaks at - 4 ms™! (see Figure 31). The rawinsonde
also reports surface westerlies. The meridional wind component (Figure
45) shows 1ittle vertical shear from the surface to 400 mb and supports

the aircraft data in a qualitatiyve sense.
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In conclusion, then, this brief intercomparison has shown that the
thermodynamic data from the systems presented here are in close agree-
ment and gives confidence to the arguments presented in the previous
chapter. The wind data from the BLIS should, however, be used with
caution because of the directional problem. Winds derived from rawin-
sonde data seem to support the aircraft data but it is unwise, at this

stage, to generalize from just one rawinsonde!



V. CONCLUSIONS

The aim of this case-study was to attempt a semi-quantitative des-
cription of the typical lines of convection observed during the GATE,
and to attempt a brief intercomparison between the different data sets.
A line mission on 2nd September 1974 was flown close to the C-scale
array where there were two lines which appeared to be components of a
feeder band to a vortex to the NE. Aircraft, rawinsonde, radar and
satellite data are used to describe the modifications of the immediate
atmosphere surrounding the 1ines. Using high resolution aircraft data
(10 sec) relative to the lines, there appeared to be very strong gradi-
ents in the vicinity of the 'leading edge' of the 1ines. Summarizing
their basic features we have:

a) Sharp convergence of high op air at the 'leading' edge of the

Tines (v 1073 s"])

b) Strong divergence of slightly smaller magnitude to the rear

c) Large drop in oF indicating the presence of a downdraft at the

surface with its origins in the 900-800 mb layer

d) Cooling at the surface after the line passage of ~ 1.5 °K

(small)

e) Small, but sharp, pressure drop with a large decrease in in-

coming solar radiation, together with a Towering of cloud base.

From these line sections, the vertical profiles showed mean in-
flow and outflow. The wind profiles showed:

a) Surface westerlies ahead of the line

b) Very little vertical shear in both wind components

c) No observable steering level
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d) Lines are embedded in a larger-scale motion field which is

convergent and cyclonic from the surface to 700 mb.

The thermodynamic profiles showed:

e) Drying in the Towest 50 mb resulting from the downdraft

f) Drying at the surface and moistening above

g) Cooling at the surface of 1.5°K with warming aloft

h) A large o drop in the mixed layer.

From the wind fields relative to the line and the thermodynamic
fields a schematic picture of the line is shown in Figure 46. The pro-
pagation of the downdraft after it has reached the surface forces addi-
tional mass up into the cloud layer from the surface layer. It is the
downdraft which produces the sub-cloud layer convergence into the lead-
ing edge of the Tine, and, provided there is an abundant supply of warm,
moist air in the mixed layer this may be the dominant driving mechanism
for the Tines. They can be maintained for a period of several hours
until the supply of high O air has been extinguished.

A small pressure drop was observed after the passage of the gust
front. This is unusual because the pressure normally rises at the gust-
front to form a mesohigh (Zipser, 1977).

Since there is very little vertical shear in both the wind com-
ponents, and therefore, no indication of a steering level, these systems
must be self-propagating convective systems moving regularly through the
basic large-scale flow field. A topic, which has not been the goal of
this thesis, is to determine whether they are propagated by the down-
draft alone or by the synoptic-scale flow field, Also, the fact that
they may be forced grayity waves must not be overlooked, These ques-

tions may be answered by combining meso-scale and large-scale case
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studies with the objective of finding which scale is dominant. The
interaction with the large-scale can possibly be studied by computing
large-scale parameters over the GATE array such as a threshold value of
divergence necessary for convection.

From various pieces of 'visual data' for this case, these lines
appear to be spaced regularly (60 km) within the array and have con-
stant velocity. Their spacing and velocity should be studied further -
it is possibly a dynamical problem and is unfortunately, beyond the
scope of this paper but provides avenues for future research.

In order to examine the generality of these lines, the author is
currently investigating other days on which 1ine convection was present.
Personal observation of line-type systems ét Dakar and a brief study of
13th July 1974 (Julian Day 194) seems to indicate that strong surface

wind-shifts are a common occurrence within these types of systems.
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