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ABSTRACT 

Data from 29 months o f  s a t e l l i t e  r a d i a t i o n  budget measurements, 

taken i n t e r m i t t e n t l y  over the per iod 1964 through 1971, are composited 

i n t o  mean month, season and annual zona l ly  averaged meridiona,, p r o f i l e s .  

Ind iv idua l  months, which comprise the 29 month set, were selected as 

representing the best ava i lab le  t o t a l  f l u x  data f o r  compositing i n t o  

la rge  scale s t a t i s t i c s  f o r  c l imate  studies. A discussion o f  spa t i a l  

r eso lu t i on  o f  the  measurements along w i t h  an e r ro r  analysis, i nc lud ing  

both the uncer ta in ty  and standard e r r o r  o f  the  mean, are presented. 
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1.0 INTRODUCTION 

A cl imatology o f  the ne t  f l u x  o f  energy exchanged between Planet 

Earth and space has been computed from radiance and i r rad iance  measure- 

ments taken by Earth o r b i t i n g  s a t e l l i t e s .  The ne t  f l u x  i s  der ived as 

a  d i f fe rence  between t o t a l  spect ra l  incoming so la r  f l u x  and the  sum o f  

separate measurements o f  r e f l ec ted  shortwave and thermal i n f r a r e d  

exitance. This r e l a t i onsh ip  i s  shown mathematical ly as: 

Net = Solar I n  - Ref lected - Thermal 

Net, re f lec ted ,  and i n f r a red  f l u x  are f requen t l y  r e f e r red  t o  as rad ia-  

t i o n  budget data o r  measurements i n  t h i s  repor t .  

Radiat ion budget measurements are presented i n  the form o f  mean 

month, season, and annual zonal p r o f i l e s .  Zonal averaged data are a lso 

re fer red t o  as mean meridional p r o f  i 1 es. The terminology zonal averaged, 

i s  t o  be in te rp re ted  as an average taken over 360 degrees o f  long i tude 

f o r  any given l a t i t u d e  zone. 

Mean zonal r a d i a t i o n  budget p r o f i l e s  are  presented as c l imate  

s t a t i s t i c s  f o r  use i n  c l imate  studies.  The authors be l ieve t h a t  the 

p r o f i l e s  f o r  the per iod 1964 through 1971 are the  best s t a t i s t i c s  

ava i lab le  t o  date. Future measurements from the Earth Radiat ion Budget 

(ERB) experiment on Nimbus 6 and Nimbus G s a t e l l i t e s  w i l l  augment t h i s  

data set .  

There have been a  number o f  requests from persons involved i n  

c l imate  research f o r  such s t a t i s t i c s .  This r epo r t  w i l l  provide them 

w i t h  the s t a t i s t i c s  and, a t  the same time, provide a  source o f  informa- 

t i o n  about sate1 l i t e  r a d i a t i o n  budget measurements w i  t h  appropr iate 

references f o r  those des i r i ng  add i t i ona l  de ta i l ed  informat ion.  



2.0 DATA COLLECTION 

Mean zonal r ad i a t i on  budget p r o f i l e s  are  made up from a c o l l e c t i o n  

o f  29 ind iv idua l  monthly sets. This c o l l e c t i o n  does no t  correspond on 

a one-to-one basis w i t h  the c o l l e c t i o n  o f  an e a r l i e r  pub l i ca t ion  by 

Vonder Haar and E l l  i s  (1974), which emphasized maps o f  data o r  w i t h  the 

mean set  o f  Vonder Haar and Suomi (1971), which d i d  no t  conta in  data 

from the ea r l y  seventies. The c o l l e c t i o n  i n  t h i s  r epo r t  i s  shown i n  

Table 1. It includes add i t i ona l  data from the ITOS 1 and NOAA 1 sate1 - 
1 i tes (Flanders and Smith, 1975) dur ing e a r l y  1970 and 1971, and ESSA 7 

data (Mac Donald, 1970) i n  l a t e  1968 and e a r l y  1969. Data excluded from 

t h i s  repor t ,  y e t  useful  f o r  o ther  purposes, are the TIROS 4 and 7 sa te l -  

1 i t e  measurements i n  1962 through 1964 along w i t h  8 months o f  exper i -  

mental sate1 1 i t e  measurements. The TIROS sate1 1 i t e  could no t  sample 

poleward o f  the 63.5 l a t i t u d e s  because o f  t h e i r  o r b i t a l  i n c l i n a t i o n  

(Bandeen, e t  a1 . , 1965). L imi ted on board tape recorder storage 1 e f t  

data gaps between some ground readout s ta t ions.  The sampl i n g  def i c i en -  

c i es  precluded obta in ing representa t ive  monthly data. 

Measurements from experimental sate1 1 i tes  f o r  Apr i  1 through Novem- 

ber 1965 showed l a rge  differences between them and the 29 months of 

remaining measurements. Globa l ly  averaged albedoes dropped from 28.5 

percent i n  March 1965 t o  19.5 percent i n  August 1965. Albedo over 

North A f r i ca  was i n  the  neighborhood o f  10 percent f o r  the months o f  

May, June, Ju l y  and August 1965. These are  extremely low values and 

thus i t  seems q u i t e  reasonable t h a t  the data do no t  represent t r u e  ab- 

so lu te  values. Thus, they were no t  inc luded i n  the  29 month data zonal 

average data set .  



TABLE 1. 

Chronological l i s t  o f  ea r t h -o rb i t i ng  s a t e l l i t e s  from which the  present r ad i a t i on  
measurements were taken. The approximate l oca l  t ime a t  which each s a t e l l i t e  
crossed the equator dur ing day l i gh t  hours i s  given i n  parentheses. EX= Experimental, 
N2 = Nimbus 2, N3 = Nimbus 3, E7 = ESSA 7, I 1  = ITOS 1 and NO1 = NOAA 1. 

YEAR 
SAMPLE 

MONTH 1964 1965 1 966 1967 1968 1969 1970 1971 SIZE 

Jan 

Mar 

Jun 

Ju l  

Aug EX (08:55) 

S ~ P  EX (09:15) 

Oc t EX (09:40) 

Nov EX (10:05) 

Dec EX (10:30) 



About the Averages 

Occasionally a near po la r  zona l ly  averaged albedo was estimated. A 

c r i t e r i o n  app l ied i n  computing albedo was t h a t  i f  more than 1 wa t t  per 

square meter o f  incoming so la r  f l u x  f e l l  i n t o  a l a t i t u d e  zone, then 

there should be a re f lec ted  f l u x .  Whenever t h i s  c r i t e r i o n  was no t  sat-  

i s f i e d ,  an estimated albedo was assigned t o  the zone. The c r i t e r i o n  

was not  s a t i s f i e d  i n  a few low i l l u m i n a t i o n  cases i n  l a t i t u d e  zones 

bordering the po la r  n ight .  Here the  s a t e l l i t e  measured a very small 

s ignal  i n  the v i s i b l e  l i g h t  spectrum, a s igna l  no t  s i g n i f i c a n t l y  above. 

noise i n  the s a t e l l i t e  system. 

. Values which were estimated are shown i n  Table 2. Estimated a l -  

bedoes f o r  these low l i g h t  cases provide a b e t t e r  i npu t  t o  the  ne t  f l u x  

ca l cu l a t i on  than an assignment o f  zero t o  albedo o r  r e f l e c t e d  f l u x .  

The most severe case f o r  which an assignment was made i s  September a t  

75 no r th  l a t i t ude .  An assignment o f  50 percent albedo gave a 73 watts/ 

2 m r e f l ec ted  f l u x .  I f  t h i s  est imate i s  o f f  by k 5 u n i t s  ou t  o f  100 o r  

2 f 8 watts/m , then i t  i s  near the  uncer ta in ty  i n  the measurements ( d i s -  

cussed i n  Section 111). Again t h i s  i s  an extreme case but, there  i s  

l i t t l e  doubt t h a t  an estimated value al lows a more representa t ive  ca l -  

cu l a t i on  of net  f l u x  t o  space than would be obtained by c a l l i n g  a 

missing a1 bedo zero. 

Estimated albedos were no t  ca r r i ed  through i n  computing annual 

average albedo. Since measured albedoes are ava i lab le  f o r  many months 

of the data, there  i s  doubt as t o  whether estimated values would add 

t o  the representativeness o f  annual average albedo. However, estimates 

were included i n  computing mean season albedo a t  65 and 75 south l a t -  

i tudes i n  the June-July-August season, and a t  85 nor th  l a t i t u d e  i n  the 



TABLE 2 

ESTIMATED ALBEDO VALUES 

FOR LOW INSOLATION CONDITIONS 

A1 bedo Ref 1 ected F l  ux 
Month La t i tude (Percent) Density (watts/m2) 

June 

July 

August 

September 

Season 

June, July,  
August 

September, 
October, 
November 



September-October-November season. It was necessary t o  use estimates 

i n  these seasons s ince a l l  months i n  the seasons had missing albedoes 

a t  such l a t i t udes .  

About the Spat ia l  Resolut ion 

Resolution o f  both the measurement and the g r i d  map must be con- 

sidered. Two types o f  sensor measurements comprise t h i s  data set:  

scanning radiometers and wide angle o r  f l a t  p l a t e  d i sc  sensors. 

The scanning radiometers are medium reso lu t i on  radiometers (MRIR) 

on board Nimbus 2 and 3 s a t e l l i t e s .  The f i e l d  o f  view o f  the rad io-  

meters var ies  from 50 km o f  great  c i r c l e  arc d istance a t  nad i r  t o  110 

km a t  an angle o f  40' from nad i r  (Raschke and Bandeen, 1970). 

A1 1 remaining s a t e l l  i t e  measurements comprising t h i s  data se t  are 

from f l a t  p l a t e  d i sc  sensors w i t h  a f i e l d  o f  view o f  180° o r    IT sterad- 

ians o f  s o l i d  angle. The s o l i d  angle subtended by the  Earth a t  the 

s a t e l l i t e  i s  a func t ion  o f  s a t e l l i t e  he ight  only. Thus the spa t ia l  

reso lu t ion  o f  a f l a t  p l a t e  sensor i s  dependent on he ight  alone. This 

reso lu t ion  var ies  from 53' o f  great  c i r c l e  arc  (5,900 km) f o r  lower 

o r b i t i n g  experimental sate1 1 i tes t o  70' (7,770 km) f o r  higher o r b i t i n g  

ESSA, ITOS, NOAA sa t e l l  i tes . 
I f  on ly  t o t a l  power received a t  the sensor i s  considered, one may 

be mislead as t o  measurement r eso lu t i on  o f  a f l a t  p l a t e  sensor. By 

considering a smaller area on the  ea r t h ' s  sur face con t r i bu t i ng  t o  50 

percent power on the  sensor one may get  a b e t t e r  est imate of sensor re -  

so lu t ion.  A great  c i r c l e  arc d istance on the Ear th 's  surface con t r ibu t -  

i n g  t o  50 percent o f  the power inc iden t  on a sensor can be ca lcu la ted i f  

one assumes the  Earth atmosphere system t o  be a homogeneous, i s o t r o p i c  



r e f l e c t o r  and emi t te r  (Appendix A). Ha l f  power reso lu t ion  i n  terms 

o f  great  c i r c l e  arc  o f  the Ear th 's  surface i s  11.50 (1,280 km) fo r  the 

lower o r b i t i n g  s a t e l l i t e  t o  19' (2, 130 km) f o r  the higher o r b i t i n g  

s a t e l l i t e s .  Thus, the h a l f  power area i s  on ly  5 t o  10 percent o f  the 

f u l l  power area o r  approximately 25 percent of the great  c i r c l e  arc. 

A1 1 o f  the  data are  presented a t  10' l a t i t u d e  i n t e r v a l s  from 85N 

t o  85s i n  t h i s  repor t .  Data from higher r eso lu t i on  scanning radiometers 

were averaged over each 10' l a t i t u d e  zone. I f ha l f  power r eso lu t i on  o f  

the f l a t  p l a t e  sensors i s  considered t o  be an est imate of sensor measure- 

ment reso lu t ion,  then i t  i s  seen t h a t  the experimental data are compatible 

w i t h  10' gr idd ing.  However, ESSA, ITOS, and NOAA data, which comprise 

j u s t  10 monhts o f  our 29 month data set, are much smoother and more re -  

presentat ive o f  f l u x  measurements over 20° l a t i t u d e  bands. Users o f  mean 

s t a t i s t i c s  presented here should be aware o f  the f l u x  measurement resolu-  

t i on .  The numbers and graphs should be considered as representing f luxes 

from 10 t o  20' 1 a t i  tude zones. 

F l a t  p l a t e  data have been reduced from sate1 1 i t e  he ight  (hs) t o  some 

reference height  above the Ear th 's  surface (ho). The ho values vary from 

30 km fo r  experimental s a t e l l i t e s ,  0 km f o r  ESSA 7, and 10 km f o r  ITOS 1 

and NOAA 1; the dif ference over 0 t o  30 km has less  than a 1 percent 

ef fect  on the reduced f l ux  value. It must be kept i n  mind t h a t  a reduc- 

t i o n  t o  some ho i s  no t  a deconvolut ion process which considers inhomo- 

geneously d i s t r i b u t e d  r a d i a t i o n  sources i n  the  sensor f i e l d  o f  view. 

Instead, homogeniety and i so t ropy  are assumed so t h a t  simple geometry 

a l l ow a reduction. I t  must be noted t h a t  a sensor does measure s i g n i f i -  

cant an isot rop ic  radiance outs ide the geometr ical ly  reduced f i e l d  o f  

view. The reduct ion i s  no t  too bad when working w i t h  t ime averaged data 



since t rans ien t  c loud pat terns tend t o  promote a  homogeneous target .  

However, there are  c e r t a i n  standing inhomogenities present i n  t ime 

average f luxes ( p r i m a r i l y  due t o  ice-snow f i e l d s ,  continent-ocean 

d i s t r i b u t i o n ,  and s ta t ionary  c loud systems) which preclude simple 

geometric data reduct ion t o  an a r b i t r a r y  reference leve l ,  ho. 

3.0 ERROR ANALYSIS OF THE MERIDIONAL PROFILES 

Uncerta inty o f  i nd i v i dua l  samples can be combined i n t o  an un- 

c e r t a i n t y  o f  the mean value. Add i t i ona l l y ,  standard dev ia t ion  i n  ne t  

f l u x  values can be computed f o r  each monthly t ime per iod from which a  

standard e r r o r  o f  the mean can be calculated.  A comparison between com- 

puted uncer ta in t ies  and e r r o r  i n  the mean estimates al lows one t o  draw 

some conclusions concerning natura l  t ime v a r i a b i l  i t y  about the mean. 

Uncerta inty i n  the  Mean 

Measurement and data reduct ion uncer ta in t ies  are no t  always we l l  

known. Each uncer ta in ty  i s  considered q u a l i t a t i v e l y ,  a t  l eas t ,  as being 

composed o f  random and systematic er rors .  The uncer ta in ty  due t o  random 

er ro rs  can be minimized by sampling f requen t l y  i n  both space and time. 

Systematic errors,  i f  known i n  s ign and magnitude, can be removed from 

the data. However, some are no t  known and, therefore,  cannot be removed. 

Ind iv idua l  i d e n t i f i a b l e ,  but  no t  necessar i ly  quan t i ta t i ve ,  uncer ta in t ies  

are discussed as fo l lows.  

1  ) The "so lar  constant" has been taken as 1360 w/m2 a f t e r  Drummond 

e t  a1.(1968). A t o t a l  uncer ta in ty  i n  the so la r  constant i s  es- 

t imated t o  be f 1.5 percent a f t e r  Thekaekara (1 975). 

2)  Ca l ib ra t ion  o f  sensors and t r a c e a b i l i t y  o f  the c a l i b r a t i o n  t o  

primary standards. 



3 )  Unaccountable degradation of the sensor in space. 

4 )  Diurnal sampling bias since a l l  of data a re  taken from s u n  

synchronous satel  1 i t e s ,  i .e . ,  sate1 1 i tes  which sample a t  

the same local sun time each day. Thus, the effects  of 

diurnal cloud variations are  not measured. 

5 )  Smoothing in space by f l a t  plate  sensors so tha t  a grided 

value represents a measurement fo r  some larger area than 

the grid spacing. This was discussed in the previous section 

on resolution. 

6) Corrections applied to  MRIR scanners on Nimbus 2 and 3 to 

account for  anisotropic Earth-atmosphere reflections to  space. 

7 )  Parameterization applied to  Nimbus 3 1 ongwave spectral 

radiances along with 1 imb darkening parameterization appl ied 

to  both Nimbus 2 and Nimbus 3 MRIR to  obtain to ta l  longwave 

flux t o  space. 

8) An assumption of zero net planetary radiation balance applied 

in ESSA 7 data reduction necessary to  resolve reflected fluxes 

to  space. This assumption becomes less  r e s t r i c t ive  for  longer 

time averaging intervals.  Absolute error  in net radiation may 

2 be as large as 2 10 watts/m when averaged over a month fo r  

ESSA 7 data. 

9)  All monthly se t s  have time sampling voids so tha t  a monthly 

mean sample i s  not qui te  a t rue  mean. Some monthly samples 

have spat ia l  sampling voids caused by inadequate onboard 

tape recorder storage between s a t e l l i t e  ground readout s i t e s .  

Others are  due to  low signal-to-noise r a t io  in low l ight  s i t -  

uations near the solar  terminator on the Earth. 



10) Natural year-to-year v a r i a b i l i t y  o f  the t a rge t  which might pre- 

clude the mean o f  a few monthly samples being a representat ive 

est imate o f  a c l imate  mean. 

Conservative estimates of the t o t a l  uncer ta in ty  i n  incoming so lar ,  

albedo and i n f r a red  exitance are as fo l l ow:  
+ 

Solar i nso la t ion :  0 = - 1.5 percent 

A1 bedo : = f 5 percent (f 0.05 x Albedo) 

I n f r a red  Exi tance: o = 2 5 percent 

Uncerta inty i n  the so la r  constant o f  * 1.5 percent i s  from Thekaekara 

(1975). Uncerta inty o f  f 5 percent i n  a1 bedo and i n f r a r e d  exitance i s  

qu i t e  conservative when one considers j u s t  uncer ta in ty  i n  sensor ca l -  

i b r a t i o n  and degradation which i s  2 t o  3 percent. However, i f  we con- 

s ide r  a l l  o f  the uncer ta in t ies  i n  our l i s t ,  then f 5 percent i s  no t  too 

r i g i d .  

Uncerta inty i n  ne t  r a d i a t i o n  has been computed considering e f f ec t s  

of both dependent and independent e r r o r s  (Appendix B).  Tables 3 and 4 

show the computed uncer ta in t ies  f o r  mean months, mean seasons, and mean 

annual ne t  rad ia t ion .  The very la rge  uncer ta in t ies  i n  September are  

due t o  having j u s t  one monthly data se t  t o  apply as a mean September. 

The la rge  September uncer ta in ty  i s  no t  so outstanding i n  mean season 

uncer ta in t ies .  Tota l  uncer ta in ty  f o r  the mean annual case i s  l ess  than 

2 o r  equal t o  10 wattslm a t  a1 1 l a t i t udes .  This i s  no t  too bad when one 

2 considers t h a t  112 o f  a l l  the  uncer ta in ty  or  5 wattslm i s  equivalent 

t o  the uncer ta in ty  i n  the global  average so la r  constant. I n  o ther  words, 

2 10 wattslm uncer ta in ty  i n  ne t  f l u x  i s  equivalent  t o  a 3 percent un- 

c e r t a i n t y  i n  the value o f  the so l a r  constant i f  exact Earth f l u x  measure- 

ments could be made. 







Standard Er ror  i n  the Mean 

Standard e r r o r  i n  the mean i s  an est imate drawn from independent 

random samples o f  how "good" the mean value i s .  Standard e r r o r  i n  the  

mean i s  def ined as: 

SEM = a 
N 

where o i s  the standard dev ia t ion  and N i s  t he  number o f  samples i n  

the mean. A s u f f i c i e n t  number o f  monthly r a d i a t i o n  budget samples 

are no t  ava i lab le  t o  compute SEM on a  monthly basis. However, by com- 

b in ing  monthly i n t o  seasonal a ' ~ ,  a  meaningful s t a t i s t i c  can be gener- 

ated. The process o f  combination i s  i d e n t i c a l  t o  t h a t  f o r  combining 

uncer ta in t ies  (Appendix C) .  The r e s u l t s  i n  Table 5 show t h a t  SEM of 

the po la r  regions i s  l a rge r  i n  the  f a l l  and win ter  seasons of each 

hemisphere than i s  the uncer ta in ty  i n  mean s t a t i s t i c s  o f  Table 4. 

Just  the opposite, and o f  l esser  extent, i s  seen i n  the t rop ics .  The 

la rge  SEM i n  po la r  regions ind icates  t h a t  l a rge  year-to-year va r ia t ions  

are i n  the data i n  po la r  regions (70 t o  90 l a t i t u d e ) ,  which are l a rge r  

than the uncer ta in ty  i n  the data. They most probably are r ea l  i n t e r -  

annual va r ia t ions .  But, one should have less  confidence i n  mean values 

i n  near po la r  regions because o f  l a rge  standard e r r o r  i n  the mean, 

p a r t i c u l a r l y  dur ing the  fa1 1  and w in te r  seasons. 



TABLE 5 

Standard Er ro r  o f  Season Mean and Annual Mean Net Radiat ion (watts/meter2) 

La t i tude  DJF MAM JJA SON ANNUAL 

North 85 

75 

65 

5 5 

45 

3 5 

25 

15 

5 

South 5 

15 

25 

3 5 



4.0 MEAN RADIATION BUDGET STATISTICS 

The s t a t i s t i c s  are presented so t h a t  12 mean months are fo l lowed 

by fou r  mean seasons and a mean annual set .  An average value i s  tab- 

u la ted f o r  each 10 degree l a t i t u d e  zone i n  watts/meter2 except fo r  albedo 

which i s  i n  percent. Solar i npu t  t o  the Earth atmosphere system was 

spec i f ied  w i t h  co r rec t  Earth-Sun geometry using a so la r  constant of 

2 1360 wattslmeter . 
Column headings are defined as fo l lows:  

NET: ne t  r a d i o t i v e  f l u x  exchange w i t h  space 

I R :  i n f r a red  exitance, o r  thermal longwave f l u x  loss  t o  space 

ALB: A1 bedo i n  percent 

ABS: Shortwave o r  so la r  f l u x  absorbed i n  an Earth-atmosphere c lumn P 
REF: re f lec ted  and scat tered shortwave, o r  so la r  f l u x  t o  spacel. 

Each mean se t  of zonal s t a t i s t i c s  i s  fo l lowed by a graphical prk- 

sentat ion of zonal average albedo, i n f r a r e d  exi tance and ne t  rad ia t ion .  

. -  - 



MEAN JANUARY RADIATION BUDGET ( w a t t s / r n e t e r 2 )  

LAT NET I R ALB ABS REF 
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LAT NET I R AL B ABS REF 

I 
8 5 -35.8 197.5 62.0 161.8 263.9 

7 5 -39.1 202.1 60.5 163.0 249.6 

65 -11.5 213.4 50.9 201.9 209.3 

5 5 29.7 221.4 42.0 251 .1 181.8 

45 57.4 235.7 35.0 293.0 157.8 

3 5 68.5 252.6 30.2 321 .1 138.9 

2 5 66.2 270.0 26.6 308.4 109.5 

15 73.5 264.5 23.8 338.0 105.6 

5 54.9 253.5 26.2 308.4 109.5 

- 5 22.6 269.7 23.2 292.3 88.3 

-1 5 -22.3 277.9 23.3 255.5 77.6 

-25 -64.9 266.0 27.5 201.2 76.3 

1:: 
-1 03.4 244.2 34.5 140.8 74.2 

-142.5 227.9 42.6 85.3 63.3 

-55 -168.9 3 1 1 . 5  48.6 42.6 40.2 
I 

1 -65 -185.9 194.9 62.0 9.0 14.7 
I 

I -75 -166.8 166.8 0.0 0.0 0.0 
- 

0.0 
- -- 

-85 -156.4 156.4- - - 0.0 0.0 
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APPENDIX A 

Radiant Flux, Es, a t  sate11 i t e  he ight  from the Earth (s: 

= I2.lem Es L(e,$)cose s ine de d@ 

where $ and em def ine the r i g h t  c i r c u l a r  cone tangent t o  the 

ear th  and subtended by the ear th  a t  the s a t e l l i t e  and L(e,$) i s  
I 

radiance. 

If the ta rge t  i s  assumed t o  be homogeneous and i so t r od i c ,  r = L(e,$), 

then A1 can be in tegra ted t o  y i e l d :  

2 Es = 2-71 C s i n  em 

The i n t e r i o r  great  c i r c l e  arc subtended a t  the ear th  by t h i s  cone i s :  

From the geometry i n  f i g u r e  A1 i t  i s  seen t ha t :  

-1 R 
8, = s i n  (-1 R+h  

I where h i s  the  he ight  o f  the sate1 1 i t e  above Ear lh l s  sur ace and 

R i s  the rad ius  o f  earth. 

Half power area o f  the earth, as seen by a f l a t  p l a t e  sensor on board 

an ear th  o r b i t i n g  s a t e l l i t e  a t  height  h i s ,  be equating A2: 

2 4 (2. s i n  em) = 2. i s i n  2 H 

so lv ing f o r  eH gives the h a l f  angle of t h i s  new cone 



F igu re  A 1  



From simple geometry, t h e  h a l f  power g r e a t  c i r c l e  a r c  a t  t h e  

E a r t h ' s  sur face  i s  seen t o  be: 

where y from t h e  " law o f  s ines"  i s  

v = s in- '  (R+h R sine,,) 

and the  g rea t  c i r c l e  a r c  d i s tance  i s  a',, R. 

The f l u x  a t  s a t e l l i t e  h e i g h t  (hs)  can be ad jus ted  t o  some o t h e r  

re fe rence he igh t  (ho).  The re fe rence h e i g h t  may be t h e  Ea r th ' s  sur-  

f ace  (ho = 0) o r  some h e i g h t  rep resen ta t i ve  o f  t h e  t o p  o f  t he  E a r t h ' s  

atmosphere (ho=60km). Th is  adjustment i s  s t r i c t l y  a  geometr ica l  ad- 

justment  t o  t h e  f l u x  w i t h  no al lowance made f o r  t h e  inhomogeneous and 

a n i s o t r o p i c  na ture  o f  L (4 , e )  over  t h e  t a r g e t  as seen a t  s a t e l l i t e  

he igh t .  

The geometr ical  m u l t i p l i e r ,  6, us ing  A2 i s :  

E~ sin2+- = j R + ~ S  ) 2  
B 2 

s i n  e,,, R+ho 

so t h a t  f l u x  a t  t h e  new re fe rence l e v e l  i s :  

Eo = BEs 

Table A 1  g ives  var ious  values o f  t h e  f a c t o r s  f o r  each o f  t h e  s a t e l l i t e s  

w i t h  f l a t  p l a t e  sensors. I ~ 



APPENDIX B 

The equation f o r  ne t  r a d i a t i o n  i s :  

N = ( l - A ) S - I  

where each term i s  

A, albedo 

S, so la r  f l u x  a t  the top o f  the Ear th ' s  atmosphere 

I, in f ra red  exi tance o r  thermal rad ia t ion .  

The t o t a l  uncer ta in ty  i n  the ne t  can be expressed by apply ing a  

Taylor ser ies  expansion t o  small departures from the t r u e  value: 

I 
The f i r s t  three terms on the r ight-hand s ide t r e a t  the uncer ta in ty  o f  

each component independently. The covariance o r  cor re la ted uncer ta in t ies  

are i n  brackets. It i s  known t h a t  uncer ta in ty  i n  the so la r  constant i s ,  

t o  some extent, negat ive ly  co r re l  ated w i t h  uncer ta in ty  i n  a1 bedo s ince 

albedo i s  no t  measured d i r e c t l y ,  bu t  i s  computed as func t ion  o f  so la r  

i nso la t ion .  Thus, the f i r s t  term i n  brackets i s  negative. The second 

term i n  brackets can be e l iminated s ince uncer ta in t ies  i n  so lar  constant 

and in f rared exi tance are independent. The t h i r d  term i n  brackets tends 

t o  be negative s ince uncer ta in t ies  due t o  sensor degradation i n  a  combined 

system of black and whi te sensors are negat ive ly  corre lated.  However, no t  

a l l  o f  the data i n  t h i s  r epo r t  were taken from such a  combined system. 

The e f f e c t  o f  the two negative terms i s  t o  reduce t o t a l  uncer ta in ty  i n  

the net .  I f  we consider a  worse case when a l l  uncer ta in t ies  are independent 



we can s i m p l i f y  82 t o  an expression comnonly r e fe r red  t o  as, " the law 
I 

o f  propagation o f  independent er rors .  " 

This expression has been app l ied t o  each monthly set  o f  data. I n  

another form (B3) can be app l ied t o  obta in  uncer ta in ty  i n  monthly means 

i f  each monthly set, o r  each s a t e l l i t e  measurement, has an uncer ta in ty  

independent o f  measurements from other s a t e l l i t e s  so t h a t  

where n  i s  the number o f  monthly data sets i n  each mean month. 

Uncerta inty i n  the seasonal mean must consider t h a t  uncer ta in ty  i n  

each o f  three mean months o f  a  season are  no t  independent since measure- 

ments from the same s a t e l l i t e  f requen t l y  appear i n  each mean month.. There- 

fore ,  an equation i n  the form o f  82 must consider a l l  s i x  terms w i t h  posi-  

t i v e l y  cor re la ted uncer ta in t ies .  Such an equation can be s i m p l i f i e d  t o  be: 

where K i s  the number o f  mean months i n  a  mean season ( k  3 ) .  

An equation i d e n t i c a l  t o  B5 can be app l ied t o  each mean season un- 

ce r t a i n t y  t o  obta in  uncer ta in ty  i n  the annual mean ne t  rad ia t ion .  


